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 Why sex is so pervasive in eukaryotes is one of the ma-
jor unresolved issues in evolutionary biology. Sexual spe-
cies are expected to suffer from the 2-fold cost of sex 
[Doncaster et al., 2000], and sexual reproduction has led 
to the evolution of 2 sexes with opposing reproductive 
interests [Arnqvist and Rowe, 2005; Gavrilets and Haya-
shi, 2005]. It has been argued that, by combining and re-
moving deleterious alleles, sex favors adaptation [Kon-
drashov, 1994; Otto and Gerstein, 2006; de Visser and 
Elena, 2007]. However, it could be countered that diploidy 
also allows recessive deleterious mutations to accumulate 
in the genome because alleles are masked in the hetero-
zygous state.

  The recombination of genes is indeed shared in both 
eukaryotic and some prokaryotic phyla, suggesting both 
an ancient origin and a common function [Penny, 1985]. 
However, sexual reproduction is not characterized only 
by recombination and sex should be defined as a process 
which combines recombination, meiosis, gametogenesis 
and syngamy. Although some fungi seem to show mul-
tiple mating types, the definition of sex centers on the 
nature of a sexual cell being produced [Hurst, 1996], so 
that it could be reasoned that there are only 2 sexes: males 
with motile sperm and females with larger eggs. Further, 
it may be thought that isogamy had been the ancestral 
state [Dunthorn and Katz, 2010].
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 Abstract 

 Sex is one of the greatest puzzles in evolutionary biology. A 
true meiotic process occurs only in eukaryotes, while in bac-
teria, gene transcription is fragmentary, so asexual repro-
duction in this case really means clonal reproduction. Sex 
could stem from a signal that leads to increased reproduc-
tive output of all interacting individuals and could be under-
stood as a secondary consequence of primitive metabolic 
reactions. Meiotic sex evolved in proto-eukaryotes to solve 
a problem that bacteria did not have, namely a large amount 
of DNA material, occurring in an archaic step of proto-cell 
formation and genetic exchanges. Rather than providing
selective advantages through reproduction, sex could be 
thought of as a series of separate events which combines 
step-by-step some very weak benefits of recombination, 
meiosis, gametogenesis and syngamy. 
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  Recombination in Bacteria 

 Bacteria can acquire genes by taking up some plasmid 
genes from a bacterial donor (bacterial competence), es-
pecially from dead bacterial cells, resulting in a gene con-
version event and leading to permanent changes in their 
phenotype [Bendich and Drlica, 2000]. Bacterial conjuga-
tion is often regarded as the equivalent of sex, but in a 
rigorous analysis of gene transfer mechanisms, Redfield 
[2001] showed that bacterial  rec  genes should only be con-
sidered as a DNA repair mechanism. Indeed, bacterial  rec  
genes are only implicated in some forms of homologous 
recombination and a critical analysis of the genes respon-
sible for the conjugation or gene transfer processes sug-
gests that they did not evolve for sexual reproduction 
[Redfield, 2001]. The donor carries a replicon that can 
replicate autonomously in the cell. So, in bacteria, gene 
transcription is fragmentary although Rec proteins are 
implicated in bacterial DNA repair mechanisms. The 
length of the DNA fragment randomly transmitted dur-
ing bacterial ‘conjugation’ strictly depends on the dura-
tion of contact, and the transfer is only partial from a 
donor to a recipient cell.

  Moreover, in most bacterial gene transfer mechanisms 
(conjugation, transduction, transformation), there is no 
recombination of the main chromosome, so it could be 
asserted that ‘bacteria lack genes for sex’ [Redfield, 2009]. 
Genetic exchanges occur as unselected side effects of pro-
cesses that evolved for more immediate functions [Red-
field, 2009]. Thus, most models do not take into account 
why some organisms, such as bacteria, are able to spread 
and to survive severe conditions without sexual reproduc-
tion. Conversely, and because of their comparable ecolo-
gy, the reason why protists need sex and genetic exchang-
es (true conjugation) should be understood. Furthermore, 
while current models can explain well how some events of 
recombination can be favored over the total lack of sex, the 
fact that some lines have been moving towards an obligate 
sexual reproduction remains difficult to understand.

  Confusion in Asexual Reproduction 

 Most descriptions of asexual reproduction are particu-
larly confused. Some worm species reproducing asexually 
by fission (scissiparity) have revealed hybrid origins, and 
transformation into a pelagic sexual morph (epigamy or 
epitoky) was their ancestral reproductive state [Nygren 
and Sundberg, 2003; Lunt, 2008]. Parthenogenetic species, 
such as  Cnemidophorus  lizards [Parker and Selander, 1976; 

Crews and Fitzgerald, 1980], hybridogenetic waterfrogs 
[Pagano et al., 2003] and  Poeciliopsis  fishes [Schartl et al., 
1995] are believed to use clonal or hemiclonal asexual re-
production, but these unisexual populations generally 
originated from hybridization with sexual species and ex-
hibit numerous traits shared by their gonochoristic species 
(i.e. separate sexes in distinct individuals). It could be ar-
gued that these populations have lost sex by adopting a 
form of endomitosis reproduction, often with a normal 
meiosis preceded by a replication. In numerous plants, 
apomixis occurs with a meiosis in which one division is 
suppressed. Oribatid mites can show a reversal from ‘obli-
gate’ asexual forms to sexual forms [Domes et al., 2007], 
but sexuality might have been lost repeatedly [Goldberg 
and Igic, 2008]. In some vertebrates, asexual reproduction 
could be linked to hybridization [Crews et al., 1986]. Anal-
yses of bdelloid rotifer lineages suggest that sex has been 
repeatedly lost during their evolutionary history [Mark-
Welch and Meselson, 2000]. Similarly, a sexual stage was 
evidenced in the theoretically ‘obligatory’ asexual fungus 
 Aspergillus fumigatus  [Dyer and Paoletti, 2005]. Finally, 
numerous species depend on environmental triggers to de-
termine sex and, in some fishes, this process persists 
throughout life. Indeed, although recombination provides 
advantages, some species from sexual lineages could have 
lost sexual reproduction especially when a genome conflict 
occurs. Thus, it could be thought that so-called ‘asexual’ 
eukaryotic organisms have shown a decline in sexual fer-
tility or have lost sex during their evolutionary history, al-
though they have sexual ancestry.

  By contrast, bacteria show neither meiosis nor features 
required for a true mitotic process, so the absence of sex 
in bacteria really means clonal reproduction [Bendich 
and Drlica, 2000; Lewis 2001]. McDaniel et al. [2010], 
however, found that high genetic transfer in marine bac-
teria resulted from gene transfer agents, which demon-
strated the widespread capability of variance and adapta-
tion in bacteria without sexual practices. Similarly, nu-
merous clonal genomes have revealed great adaptive 
potential [Loxdale and Lushai, 2003].

  Consequently, it could be speculated that meiotic sex 
evolved because primitive eukaryotes had to resolve a 
problem that bacteria do not have.

  Meiotic Sex 

 The oldest eukaryotes appeared more than 3 billion 
years ago [Javaux et al., 2010], so it is plausible that proto-
eukaryotes diverged from prokaryotes very early in the 
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evolutionary history [Egel, 2012]. Genetic exchanges ap-
pear to be a very archaic process, and sex may originate 
from horizontal gene transfer occurring in primitive 
steps of proto-cell development [Lodé, 2011]. Considering 
the large differences between bacteria and eukaryotes, 
sexual meiosis can be explained as a secondary conse-
quence of the transfer of large amounts of genetic mate-
rial [Lodé 2012a, b]. Meiosis originated from a primitive 
DNA repair mechanism and may occur because DNA 
can prevent degradation only by recombination [Lichten, 
2001]. Physicochemical constraints governing cell struc-
ture should be an essential aspect of cell origin.

  Sometimes, several copies of the bacterial chromo-
some could be found in bacteria, but the bacterial cell 
division occurs soon after replication of its DNA (or after 
the transfer of a new DNA fragment) suggesting that the 
quantity of genetic material affects the physicochemical 
cell integrity. While bacteria generally carry genetic ma-
terial in the form of a unique circular chromosome and 
are usually haploid, the size of eukaryotic genomes is very 
much larger, and most species are diploid or polyploid. 
Rather than a self-replication of a ‘naked-gene’, lipid 
membrane-bound proto-cell ‘bubbles’ provide a favor-
able environment for prebiotic components [Szostak et 
al., 2001] and the emergence of genetic sexual replication 
[Lodé, 2011]. It can be suggested that the difference of cell 
proto-membranes built the first major evolutionary bi-
furcation between bacteria and eukaryotes. The proto-
membrane should have kept a partial permeability, 
whereas the peptidoglycan cell wall of bacteria served as 
protection against severe primitive environmental condi-
tions, maybe because the proto-eukaryotes were housed 
in hollows of the primitive substrate. Some rare bacteria 
are known to possess polyploid genomes correlated with 
the cell size but, although these bacteria may have ac-
quired some of the advantages of eukaryotes, the abun-
dance of genome copies results in unstable genetic fea-
tures [Mendell et al., 2008].

  Anyway, sexual recombination can be portrayed as a 
secondary consequence of primitive metabolic reactions. 
Eukaryotic microorganisms may rely on aggregative be-
havior to reproduce since sexual exchanges are only in-
duced by density-dependent stressful conditions, such as 
overcrowding [Bell, 1988; Bernstein and Bernstein, 2010]. 
Indeed, sex could stem from a signal that leads to increased 
reproductive output of all interacting individuals and 
evolved as a more and more efficient specialized interac-
tion. The fact that numerous patterns of facilitation of re-
production can be found in sexual and asexual eukaryotes 
suggests it to be an ancestral trait [Crews, 1982], and Crews 

[2012] argued that sexual ‘behavior’, i.e. facilitation of re-
production, could have preceded sexual reproduction.

  The simple contact among the pre-biotic bubbles 
could, through primitive food or parasitic reactions, have 
acted as facilitation for promoting the transfer of genetic 
material from one proto-cell to another, leading to an 
‘overload’ of DNA at the origin of diploidy. The redistri-
bution of the excess of genetic material from a proto-cell 
merger would be a driving force in the origin of sex. Dip-
loidy may have resulted from an excess of DNA in the 
form of linear chromosomes, but then could have pro-
vided redundancy and facilities for gene repair. The evo-
lution of nuclear compartment in proto-eukaryotic cells 
could have resulted from physicochemical forces [Kur-
land et al., 2006; Lodé, 2012a]. In the evolution of meiosis 
from mitosis, crossing over appeared before the reduc-
tional cell division [Wilkins and Holliday, 2009]. In fact, 
transferred DNA fragments can avoid degradation only 
by recombining with the genetic material of the host
[Lichten, 2001] and the DNA is deactivated by being en-
closed in the lamina network of the nuclear membrane 
[Dahl et al., 2004], decoupling gene translation from 
transcription. Histones form the nucleosome as a non-
linear structure (chromatin) stabilizing the genetic mate-
rial. Proto-eukaryotes may have solved the problem of 
‘excess’ of diploid DNA through a reductional process 
nowadays known as meiosis producing haploid gametes. 
The fact that genes involved in meiotic mechanisms are 
conserved across eukaryotic phyla suggests a common 
origin of eukaryotes [Solari, 2002].

  As a physical process of the exchange of DNA, recom-
bination may also be a blind way for a self-promoting ele-
ment to spread [Lesbarrères, 2011; Lodé, 2011]. The hy-
pothesis that meiosis favors intergenic recombination is 
not discarded, but I argue that this possible benefit pro-
vided the primary selective pressure initiating sex. Then, 
eukaryotes could link gene exchange and reproduction 
through the fusion of 2 gametes (syngamy). While bacte-
rial reproduction did not require any change in ploidy, 
sexual reproduction is characterized by an alternation of 
diploid and haploid phases. By providing a means of or-
ganized genetic reduction, meiosis could have facilitated 
the origin of sexual reproduction in eukaryotes.

  Conclusion 

 Thus, sex should be defined as a process which com-
bines step-by-step recombination, meiosis, gametogene-
sis and syngamy. Thus, sex should not be considered to 
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be a unitary phenomenon, but rather a series of separate 
events. Genetic exchanges and recombination among 
proto-eukaryotes would be mutually advantageous, in-
creasing the potential of adaptive evolution and favoring 
sex in their evolution. This evolutionary scenario seems 
reasonable because genetic exchanges renovate the set of 
proteins involved in metabolic reactions and may result 
in adaptations for dealing with stress, especially in over-
crowding conditions. A similar phenomenon occurs in 
sexual conjugation of protists under density-dependent 
conditions [Bernstein and Bernstein, 2010]. Then, gam-
etes developed in specialized containers of DNA able to 

be dispersed and specific sexual traits evolved to attract 
congeners of the opposite sex, and thereby to favor sexu-
al reproduction. It has also been suggested that eukary-
otic lineages evolved from ancestors that could adopt 
both male and female roles [Crews, 2012]. Finally, it may 
be predicted that the cost of sex may vary across evolu-
tionary lineages with dimorphism and anisogamy.
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