Correction – France – juin 2000

Partie A : Pour tout $q \in [O; 6]$, $C_m(q) = 0.8 + 4(1 - 2q)e^{-2q}$

1. Etude des variations et du signe de C_m sur [O; 6]

Pour tout réel q de [0; 6], on a :
$$C'_{m}(q) = 4[-2 e^{-2q} + (1-2q)(-2 e^{-2q})]$$

 $C'_{m}(q) = -8 e^{-2q} - 8(1-2q) e^{-2q}$
 $C'_{m}(q) = -8 e^{-2q} (2-2q)$
 $C'_{m}(q) = 16 e^{-2q} (q-1)$

Pour tout réel q, e^{-2q} strictement positif donc le signe de C'_m (q) est celui de q - 1

- $\sin q \in (0, 1)$, q 1 < 0 donc $C'_m(q) < 0$ et la fonction C_m est strictement décroissante sur (0, 1)
- $\sin q = 1$, $C'_{m}(q) = 0$;
- $\sin q \in [1; 6[, q-1>0 \text{ donc } C'_m(q)>0 \text{ et la fonction } C_m \text{ est strictement croissante sur } [1; 6[$

Le tableau de variation de Cm est

q	0 1	6
signe de $C'_m(q)$	-	+
C_m	0,8 - 4e ⁻²	C _m (6)

En x = 1, Cm admet un minimum absolu égal à $0.8 - 4e^{-2} \approx 0.26$.

Pour tout réel q de [O; 6] on a $C_m(q) \ge C_m(1) > 0.2$

Il en résulte que pour tout q de [0; 6], on a $C_m(q) > 0$

2. Détermination de la fonction coût total

 \boldsymbol{a} . Soit g la fonction définie sur par g(q) = 4 q e^-2q g'(q) = 4 e^-2q +4q(-2 e^-2q)

$$g'(q) = 4 e^{-2q} + 4q(-2 e^{-2q})$$

 $g'(q) = 4(1-2q) e^{-2q}$

b. La fonction C_T admet pour fonction dérivée la fonction C_m. Donc C_T est une primitive de Cm sur [0; 6].

C_m étant dérivable sur [O; 6], elle admet des primitives sur [0; 6].

$$C_m(q) = 0.8 + 4 (1 - 2q)e^{-2q}$$

$$C_m(q) = 0.8 + g'(q)$$

$$C_T(q) = 0.8~q + g(q) + k$$
 ; $k \in \, \mathbb{R}$

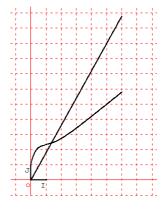
Nous savons que $C_T(0) = 1$ donc 1 = g(0) + k

or g(0) = 0 donc k = 1 et $C_T(q) = 0.8q + 4q e^{-2q} + 1$

3. a. Etude des variations de C_T

Nous savons que $C_T' = C_m$ et que pour tout q de [0; 6], $C_m(q)$ est strictement positif donc la fonction C_T est strictement croissante sur [0: 6].

b. Représentation graphique de CT



Partie B

1. L'usine fabrique q litres de ce liquide dont le prix de vente est de 1,80 F par litre. La fabrication quotidienne étant vendue en totalité, la recette quotidienne R(q) est 1,8 q (en milliers de Francs) Elle est représentée par un segment porté par la droite d'équation y = 1,8q

b.
$$B(q) = R(q) - C_T(q)$$
 donc $B(q) = 1.8q - 0.8q - 4q e^{-2q} - 1$
 $B(q) = q - 1 - 4q e^{-2q}$

2. Étude du signe de h(q)

- **a.** Pour tout q de [0; 6], $h(q) = 1,8 C_m(q)$. On a donc, pour tout q de [0; 6] $h'(q) = -C_m'(q)$. En utilisant les résultats du 1. on a :
- $\sin q \in (0, 1)$, $C'_m(q) < 0$ donc h'(q)>0 et la fonction h(q) est strictement croissante sur (0, 1) [
- $\sin q = 1$, $C'_m(q) = 0$ donc h'(q) = 0
- $\sin q \in [l]$; 6[, $C'_m(q) > 0$ donc h'(q) < 0 et la fonction h(q) est strictement décroissante sur [l]; 6[

q	0	1	6
signe de h'	+	_	
h	-3	h(1)	h(6)

avec $h(1) \approx 1.54$ et $h(6) \approx 1$

b. Montrons que l'équation h(q) = 0 admet une solution unique dans [0; 1]

Sur [0; 1], h est dérivable et strictement croissante. La restriction de h à[0; 1] est donc une bijection de [0; 1] sur [h(O); h(I)].

h(O) = -3 et $h(1) \approx 1,51$. Donc 0 appartient à [h(O); h(1)]et l'équation h(q) = 0 admet une solution unique notée α dans [0; 1].

c. Sur $[0; \alpha]$, h est croissante donc si $0 \le q < 1$, $h(q) < h(\alpha)$ soit h(q) < 0

Sur $[\alpha; 1]$, h est croissante donc si $\alpha < q \le 1$, $h(q) > h(\alpha)$ soit h(q) > 0

Sur [1; 6], h est décroissante donc $h(q) \ge h(6)$ et h(6) > 0 donc h(q) > 0

3. a. Etude des variations de B

Nous savons que B(q)=1.8q - $C_T(q)$ donc pour tout q de [0;6] , B'(q)=1.8 - $C_m(q)$ Il en découle que B'(q)=h(q)

D'après la question précédente,

- $\sin q \in (0, \alpha)$, $\sin q \in (0, \alpha)$, $\sin q \in (0, \alpha)$, $\cos q \in (0,$
- $\sin q \in \alpha$; 6[, h(q) > 0 donc B'(q)>0 et la fonction B(q) est strictement croissante sur α ; 6[

b. $\alpha \approx 0.28$

 $B(0,28) = 0.28 - 1 - 4 \times 0.28 \times e^{-0.56}$ donc $B(0,28) \approx -1.36$ et **B(\alpha)** \approx -1.36

B(α) est négatif donc il est le déficit maximum que peut craindre l'usine.