Lois à densité

Loi à densité sur un intervalle

1.1 Variable aléatoire continue

Définition

Variable aléatoire continue

Une variable aléatoire continue X est une fonction qui à chaque issue de l'univers Ω d'une expérience aléatoire, associe un nombre réel d'un intervalle I de R.

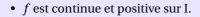
Exemple 1. On lance une flèche sur une cible de rayon 1 mètre et on mesure la distance d entre le point d'impact et le centre de la cible (en mètres). Le réel d peut prendre une infinité de valeurs dans l'intervalle [0; 1].

Exemple 2. On s'intéresse à la durée de fonctionnement normal des appareils fabriqués par une entreprise. Cette durée est une variable aléatoire dont les valeurs appartiennent à un intervalle de temps.

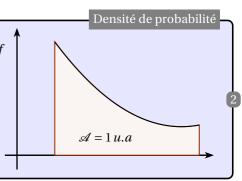
1.2 Loi de probabilité à densité

Définition

I étant un intervalle de \mathbb{R} , on appelle densité de probabilité sur I une fonction ftelle que:



• Sur l'intervalle I, l'aire sous la courbe représentative de f est égale à une unité d'aire.



Remarque 1: Le deuxième point de la définition se traduit de différentes manières selon la nature de l'intervalle I:

i) Si I = [
$$a$$
; b] avec a et b réels alors $\int_a^b f(t) dt = 1$.

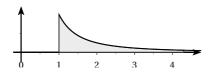
iii) Si I =
$$]-\infty$$
; a] avec $a \in \mathbb{R}$ alors $\lim_{x \to -\infty} \int_{x}^{a} f(t) dt = 1$

ii) Si I = [
$$a$$
; + ∞ [avec $a \in \mathbb{R}$ alors $\lim_{x \to +\infty} \int_{a}^{x} f(t) dt = 1$

i) Si I = [
$$a$$
; b] avec a et b réels alors $\int_a^b f(t) dt = 1$.
iii) Si I = [a ; b] avec $a \in \mathbb{R}$ alors $\lim_{x \to -\infty} \int_x^a f(t) dt = 1$
iii) Si I = [a ; $+\infty$ [avec $a \in \mathbb{R}$ alors $\lim_{x \to +\infty} \int_a^x f(t) dt = 1$
iv) Si I = \mathbb{R} et $a \in \mathbb{R}$ alors $\lim_{x \to -\infty} \int_x^a f(t) dt + \lim_{x \to +\infty} \int_a^x f(t) dt = 1$

Exercice 1. Montrer que la fonction f définie sur [0; 1] par f(t) = -2t + 2 est une densité de probabilité sur [0; 1].

Exercice 2. Montrer que la fonction g définie sur [1; +∞ [par $g(t) = \frac{1}{t^2}$ est une densité de probabilité sur [1; +∞ [...]

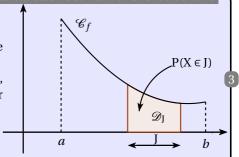


Définition

Variable aléatoire suivant une loi de densité

Soit X une variable aléatoire continue à valeurs dans un intervalle I et f une densité de probabilité sur I.

On dit que X suit la loi de probabilité de densité f si pour tout intervalle $J \subset I$, la probabilité $P(X \in J)$ est égale à l'aire du domaine \mathcal{D}_I sous la courbe \mathscr{C}_f sur l'intervalle J.



- (1) Si J = [α ; β] \subset I, alors P(X \in J) = P(X \in [α ; β]) = P($\alpha \le X \le \beta$) = $\int_{\alpha}^{\beta} f(t) dt$
- (2) Pour $c \in \mathbb{R}$, P(X = c) = 0. La probabilité que X prenne une valeur isolée est nulle.
- (3) On déduit du (2) que si $[\alpha; \beta] \subset I$, alors $P(\alpha \le X \le \beta) = P(\alpha < X \le \beta) = P(\alpha \le X < \beta) = P(\alpha \le X \le \beta)$
- (4) $P(X \notin J) = 1 P(X \in J)$ et $P(X > c) = 1 P(X \le c)$

Remarque 2: Les propriétés des probabilités étudiées dans le cas discret restent vraies.

Notamment: $P_{X \in J'}(X \in J) = \frac{P(X \in J \cap J')}{P(X \in J')}$

- **Exercice 3.** Soit X une variable aléatoire qui suit, sur l'intervalle $\left[\frac{1}{e}; e\right]$, une loi de probabilité de densité f définie par $f(x) = \frac{k}{x}$.
 - **1.** Déterminer *k*.
 - **2.** Montrer que la valeur exacte de P($1 \le X \le e$) est un nombre rationnel.
 - **3.** Calculer $P(X \ge 2)$, P(X < 0.5) et $P_{X \in [1;2,5]}(X > 2)$
- ightharpoonup Exercice 4. La variable aléatoire X qui mesure la distance au centre d'une flèche atteignant une cible de rayon 1 m suit la loi de probabilité de densité f où f est la fonction définie sur [0;1] par f(x)=2x.

Calculer:

• $P(0, 4 \le X \le 0, 7)$

• $P(X \le 0, 9)$

• P(X > 0.5)

• $P_{X>0,5}(X<0,7)$

2 Loi uniforme

2.1 Exemple

La loi uniforme modélise l'expérience aléatoire qui consiste à choisir un nombre réel de manière aléatoire dans un intervalle [*a* ; *b*]. (voir activités d'introduction).

2.2 Définition et propriété

Définition

Loi uniforme

Soient a et b deux nombres réels tels que a < b.

On dit qu'une variable aléatoire X suit une loi uniforme sur l'intervalle [a;b] si sa densité de probabilité est une fonction constante sur [a;b].

Propriété

Densité de probabilité d'une loi uniforme

La densité de probabilité de la loi uniforme sur [a; b] est la fonction f définie sur [a; b] par $f(x) = \frac{1}{b-a}$.

DÉMONSTRATION:

f est une fonction constante donc il existe un réel λ tel que pour tout $x \in [a; b]$, $f(x) = \lambda$.

$$\int_{a}^{b} \lambda \, \mathrm{d}t = 1 \Longleftrightarrow \left[\lambda \ t\right]_{a}^{b} = 1 \Longleftrightarrow \lambda b - \lambda a = 1 \Longleftrightarrow \lambda = \frac{1}{b - a}.$$

Propriété

Calcul d'une probabilité avec la loi uniforme

Si X suit la loi uniforme sur [a; b] et si [c; d] \subset [a; b] alors $P(X \in [c; d]) = \frac{d-c}{b-a}$

DÉMONSTRATION:

Exemple 3. On choisit au hasard un nombre de l'intervalle [2; 7]. Calculer la probabilité que le nombre obtenu soit :

Espérance mathématique

Définition

Espérance mathématique

Soit X une variable aléatoire continue sur un intervalle [a; b] qui suit la loi de probabilité de densité f.

On appelle espérance mathématiques de X le nombre E(X) défini par E(X) = $\int_a^b x f(x) dx$.

Exemple 4. X suit la loi uniforme sur l'intervalle [2; 7]. Sa fonction de densité est donc la fonction f définie par $f(x) = \frac{1}{7-2} = \frac{1}{5}$.

$$E(X) = \int_{2}^{7} \frac{1}{5} x \, dx = \left[\frac{1}{10} x^{2} \right]_{2}^{7} = \frac{1}{10} \times 7^{2} - \frac{1}{10} \times 2^{2} = 4, 5.$$

Propriété

Espérance de la loi uniforme

Si X suit la loi uniforme sur l'intervalle [a; b] alors $E(X) = \frac{a+b}{2}$.

DÉMONSTRATION:

> Exercice 5. Déterminer l'espérance de la variable aléatoire qui donne la distance au centre de l'impact d'une flèche lancée au hasard sur une cible de rayon 1 m.

Lois Exponentielles

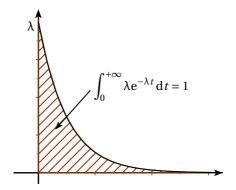
Exemple 5. Montrer que la fonction $f: x \mapsto 0, 5e^{-0,5x}$ est une densité de probabilité sur [0; $+\infty$ [.

4.1 Définitions et propriétés

Définition

Loi exponentielle de paramètre λ

Soit à un nombre réel strictement positif. On dit qu'une variable aléatoire continue X suit la loi exponentielle de paramètre λ sur [0; $+\infty$ [si sa densité de probabilité est la fonction f définie sur [0; $+\infty$ [par $f(x) = \lambda e^{-\lambda x}$.



Propriété

Calcul de probabilité avec la loi exponentielle

Soit X une variable aléatoire qui suit la loi exponentielle de paramètre λ . Pour tout intervalle [c ; d] contenu dans [0 ; $+\infty$ [, on a :

•
$$P(c \le X \le d) = e^{-\lambda c} - e^{-\lambda d}$$

•
$$P(X \ge c) = e^{-\lambda c}$$

DÉMONSTRATION:

Premier point immédiat... Deuxième point : $P(X \ge c) = 1 - P(X < c) = 1 - P(X \le c) = 1 - P(0 \le XC \le c) = 1 - \left(e^0 - e^{-\lambda c}\right) = e^{-\lambda c}$

Soit X une variable aléatoire qui suit la loi exponentielle de paramètre $\lambda > 0$. L'espérance de X est $E(X) = \frac{1}{\lambda}$.

DÉMONSTRATION
$$\dot{t}$$
 Calculons $I(x) = \int_0^x \lambda t e^{-\lambda t} dt$

Il nous faut donc connaître une primitive sur $[0; +\infty[$ de la fonction $g: t \longrightarrow \lambda t e^{-\lambda t}$. On admet qu'une primitive de g est la fonction G de la forme $G(t) = (at + b)e^{-\lambda t}$ où a et b sont deux réels à déterminer.

Ainsi pour tout réel $t \ge 0$, $G'(t) = ae^{-\lambda t} + (at + b) \times (-\lambda)e^{-\lambda t} = g(t) \iff e^{-\lambda t}(-a\lambda t + a - \lambda b) = \lambda te^{-\lambda t}$

Comme
$$\forall t \ge 0$$
, $\lambda e^{-\lambda t} \ne 0$, on en déduit que pour tout $t \ge 0$, $-at + a - b = t$ d'où $\begin{cases} -a\lambda = \lambda \\ a - \lambda b = 0 \end{cases}$ soit finalement $\begin{cases} a = -1 \\ b = -\frac{1}{\lambda} \end{cases}$.

Une primitive de $g: t \longrightarrow \lambda t e^{-\lambda t}$ est donc la fonction $G: t \longmapsto \left(-t - \frac{1}{\lambda}\right) e^{-\lambda t}$ d'où $I(x) = G(x) - G(0) = \left(-x - \frac{1}{\lambda}\right) e^{-\lambda x} + \frac{1}{\lambda}$

Déterminons la limite en $+\infty$ de $I(x) = -xe^{-\lambda x} - \frac{1}{\lambda}e^{-\lambda x} + \frac{1}{\lambda}$.

$$-xe^{-\lambda x} = \frac{1}{\lambda} \times (-\lambda x)e^{-\lambda x}$$

On pose $Y = -\lambda x$. $\lim_{x \to +\infty} Y = -\infty$ car $\lambda > 0$ et par théorème $\lim_{x \to -\infty} Ye^Y = 0$ donc par composition des limites, $\lim_{x \to +\infty} -xe^{-\lambda x} = 0$.

D'autre part, $\lim_{y \to -\infty} e^{Y} = 0$ donc par composition, $\lim_{x \to +\infty} e^{-\lambda x} = 0$ d'où finalement, $\lim_{x \to +\infty} I(x) = \frac{1}{\lambda}$.

Conclusion: $E(X) = \lim_{x \to +\infty} \frac{1}{\lambda}$

4.3 Loi sans vieillissement

On dit que la durée de vie d'un composant électronique (par exemple) est sans vieillissement lorsque la probabilité qu'il fonctionne encore pendant une période h alors qu'il fonctionne à l'instant t, ne dépend pas de t

encore pendant une période
$$h$$
 alors qu'il fonctionne à l'instant t , ne dépend pas de t .
Ainsi, $P_{X \geqslant t}(X \geqslant t + h) = P_{X \geqslant 0}(X \geqslant h)$ or sait que $P_{X \geqslant 0}(X \geqslant h) = \frac{P(X \geqslant h \text{ ET } X \geqslant 0)}{P(X \geqslant 0)} = \frac{P(X \geqslant h)}{1} = P(X \geqslant h)$

Une variable aléatoire à valeurs positives X suit une loi sans vieillissement (ou sans mémoire) lorsque pour touts nombres positifs t et h, $P_{X \ge t}(X \ge t + h) = P(X \ge h)$

Exemple 6. Par exemple, si la durée de vie X d'un composant électronique est sans vieillissement, la probabilité que sa durée de vie dépasse 7 ans sachant qu'il a déjà fonctionné 3 ans est $P_{X \ge 3}(X \ge 7) = P(X \ge 4)$

Propriété

La loi exponentielle est sans vieillissement

X est une variable aléatoire qui suit une loi exponentielle de paramètre $\lambda > 0$. La loi X est sans vieillissement. Réciproquement, on admettra que toute variable aléatoire à densité sans vieillissement suit une loi exponentielle.

14

DÉMONSTRATION:

Il s'agit de démontrer que pour tous réels
$$t$$
 et h positifs, $P_{X \ge t}(X \ge t + h) = P(X \ge h)$
$$P_{X \ge t}(X \ge t + h) = \frac{P(X \ge t + h \text{ ET } X \ge t)}{P(X \ge t)} = \frac{P(X \ge t + h)}{P(X \ge t)}.$$

Mais X suit la loi exponentielle de paramètre
$$\lambda$$
 donc $P(X \ge t) = e^{-\lambda(t+h)}$ et $P(X \ge t) = e^{-\lambda t}$ d'où $\frac{P(X \ge t+h)}{P(X \ge t)} = \frac{e^{-\lambda(t+h)}}{e^{-\lambda t}} = e^{-\lambda t-\lambda h+\lambda t} = e^{-\lambda h} = P(X \ge h)$