Advanced Text Lexical Analysis Software

J.P.Redonnet, Nov 26,2008

1 - Introduction

The goal is to create a complete set of tools to analyze a text, enough complete
to be wuseful for everybody. Mainly, this 1is the opportunity to study the
integration of different algorithms into a single program, to experiment and
improve the machine learning algorithms (perceptron, winnow), to experiment
different fuzzy string matching algorithms (edit distance, sound like) and word
singularization algorithms.

2 - Program name
This is a set of programs, named 'TexLexAn'

3 - Objectives and possibilities

3.1 - Analyse any text to determine some commons informations such as:
- The difficulty to read/understand.

— The reading time.

— The repetition of words.

- The percentage of basic/common words.

— The distribution of words per number of syllabes.

3.2 - The most interesting function of this software is the automatic
classification of texts.

— The text is automatically classified in predefined categories, such as:
protocol, law, literature thriller, literature scifi, poem, (and/or) complain,
agreement, procedure, proposal, technic, scientific, juridic, treat...

— Plagia can be detected by searching inside a dictionary of famous sentences
sorted by authors.

3.3 - Other functions.

— The character coding (utf8:Unix and utfl6:Windows) is detected.

— This program recognize automatically the main language used in the text (this
version implements the English and the French languages, but can be easily
extended to any language using the ascii characters.)

3.4 - Futur.
— Automatic summarization will be added.

4 - Applications:

- Evaluate the quality of a document (readibility, repetition, main ideas)
— Redirection of email to the proper service. Complain goes to the customer
service, resume to H.R., commercial to marketing...

- Anti-spam.

— Better web site analyse for indexation.

— Illegal or reprobated email detection (terrorism, pedophile, drug...)

— Automatic presorting of text submitted to the editors.

J.P. Redonnet — TexLexAn — Nov.,Dec, 2008 — Rev. 1.1 page 1/12

5 - Principle
The text analysis goes through 10 steps:

— Characters coding detection and conversion in ascii.

- Language detection and automatic selection of the dictionary.

- Tokenizing (text divided in words & sentences are marked).

- Syllables and basic words counting.

— Suppression of low significant words (stopwords).

Extraction of each term and its occurrence in the text.

— Conversion of plurals in singulars.

— Searching each term inside a dictionary and weighting each class.
- Sorting each class by weight in the text.

- Displaying / recording the results.

O WO Jo) Ul WN -
|

=

NOTE: A term and a 'keyterm' can be a single word or keyword, or a group of
words where their order in the group is important. For instance: 'new jersey' ,
'happy new year', 'world wide web'

6 - Learning feature

In supervised learning, 'the learning loop' allows the user to update the
dictionaries with new classes, new terms, or to consolidate the weighting. Each

text analysed provides a list of 'keyterms' (single words & group of words) with
their occurrences in the text that will be used by the program to enrich its
'knowledge base'. In present time, an human operator is required to provide the

class label.

The futur versions should include an unsupervised learning algorithm allowing
the program to learn by itself after the initial supervised learning. The expert
will have to validate or to correct the weak assumptions made by the classifier.

Note: The learning loop can work as a feedback when the operator provides the
correct class label of a mis-categorized text.

7 - The Classifier - Brief description
7.1 Linear classifier

This is the most interesting part of this program; the classification or
categorization is generally considered as part of the artificial intelligence.

Classifiers can be splitted in two several categories, we will consider here
only the supervised and the unsupervised learning classifier.

a) The supervised learning consists to train the system with a group of data
already labelled and called vectors (texts precategorized in our case). The
classification algorithm estimates the best coefficients of a mathematical
model.

b) The unsupervised learning consists to let the program to cluster the corpus
of uncategorized (unlabeled)examples. A Maximization-Expectation algorithm is
generally used to group texts sharing the maximum of similarities. Then the
clusterized texts can be used to build a mathematical model.

J.P. Redonnet — TexLexAn — Nov.,Dec, 2008 — Rev. 1.1 page 2/ 12

c) The semi-supervised learning starts with the minimum of data already labeled
(texts manually categorized) and continues its training with the main corpus of
text unlabeled. This technics allows to save the time of an expert charged to
categorize manually the training sets of texts, and to get a better accuracy of
the classification than the unsupervised learning classifiers can provide.

The goal of training of supervised, unsupervised or semi-supervised classifier
is to build a model that will be used to class a new text. The simplest
mathematical model is a polynomial equation of the first order:

n
f(X) = al'Xl +a2'X2+...+an'xn+b = ZI-GJ'XJ-l-b
J:

The simplest classifiers attribute one polynomial of first order to each class.
With the assumptions, there are no interactions between each terms x; and the
relation is purely linear between each term the score f(x). The problematic is
to determine with maximum of robustness the coefficients a; (called weights).
The well-known linear regression is one of the methods used.

Bayesian independence classifier categorizes a document by estimating the
probability that a set of terms extracted from the text belongs a class. The

Naive Bayes assumptions that the terms i are independents allows the simple
relation:

Pr(dlc;| = JliPr(wj|ci)

Where the probability that a text d belongs to the class c; is the product of
the probability of each term wjy; in the text belongs to the class c;.

Unfortunately in practice, the assumption that terms are independents is rarely
verified, and the probability Pr(dlc;) is very often inaccurate. But because the
Naive Bayes classifier simply attributes the value TRUE to the class with the
highest estimated probability, this method finally works pretty well regarding
its simplicity.

n
C = argmax|Pr(c]-[] Pr(w,c|
j=\
Where C is the class attributed to the document.
The probabilities Pr(c;) and Pr(w;|c;) are estimated from the training texts.

See [1] for general informations on Text classification.

J.P. Redonnet — TexLexAn — Nov.,Dec, 2008 — Rev. 1.1 page 3/ 12

7.2 Implementation

The study of Gartner and Flash [2] shows the Naive Bayes performs pretty well in
many cases; and Rennie, Shih, Teevan and Karger [3] describe several technics
that correct some deficiencies in the application of the NB classifier,
improving significantly its performances. Ng Andrew and Jordan [4] shows that
the NB classifier often converges faster than the logistic classifier, and Zang
H. [5] presents a novel explanation of the performance of NB.

In order to make this application usable on the majority of the microcomputer; a
simple linear classifier derived and adapted of the Naive Bayes (NB) has been
chosen for its rapidity, its good performances if the weights are carefully
calculated, and its simplicity.

Computation of the scores:

The simplest linear function is used to compute the score y; of each class i.
x; is the number of occurrence of the term j in the text and a;; its weight of in
the class 1i.

n
Jj=

Note: The highest score corresponds to the most probable class. Scores computed
with the number of occurrences are dependant of the document length; because
they are all biased in the same proportion their ranks are corrects.

The program ranks the scores from the highest (most probable class) to the
lowest (less probable class) and computes their normalized values those are
independents of the document length.

y, = i

1 n
£

n: last class

Computation of the weights:

Weights are computed from a set labeled texts (training texts).
— In case the training texts are approximately of the same size:

a = Xy

y n
Z X kj
k=1

— In case the classes do not have the same size of training texts, it is
important to normalise the weight:

. a. L
an, Weight maximum found. a =

i
a, Ll.

L, Size of the training texts for the class m (maximum a)
L; Size of the training texts for the class 1i.

Salton and Buckley [6] present several typical term-weighting formulas and

compare their performance. It appears that the best fully weighted system and
the best weighted probabilistic weight (1) provide the best results for their
collection of texts. They note the importance of the length normalization too.

J.P. Redonnet — TexLexAn — Nov.,Dec, 2008 — Rev. 1.1 page 4/ 12

0.5x.,

Best weighted probabilistic weight (1): GU = 0.5+—1%
X

X, the maximum of occurrence of a term m

It is obvious the weighting formula is important in the classification accuracy
and it appears the performance of a formula depends of the characteristics of
the texts analyzed, such as the length, the number of different 'keyterms',
their frequency and noise in the texts. It seems interesting to compute several
weighting formula, then to choose one would fit the best to the characteristics
of the documents analyzed.

Note: The version 1 of this program only works with positive weight wvalues,
but it is possible to use negative weight too. This case will mean that some
'keyterms' may decrease the probability to have a class considered.

Text and Lexical transformations:

The classifier cannot work on a raw text. The first step is the detection of the
main language of the text. The next step is the tokenization where each words
are extracted. During this step, any special single characters, punctuations
marks, and articles are discarded. Uppercase characters are converted in
lowercase and finally plurals are converted in singulars.

Bags of terms:

All terms in the text are regrouped and their occurrences computed. So The
position of each term is the text is lost. The classifier works on the concept
of a bag of terms.

String matching:

Each term of the bag of term is searched inside a 'dictionary' to retrieve its
class appartenance and its weight in this class. For this search, there is two
possibilities of terms matching:

— A strict matching. Its advantage is to be fast but misspelled terms cannot be
found in the dictionaries. Because misspelled terms do not participate, the
scores can be biased.

— A fuzzy matching. Misspelled terms can be retrieved, but the algorithms are
slow and can introduce a bias in case of confusion between two terms of close
spelling. In this program, the Levenshtein algorithm is used to compute strings
distance and find the closest term in the dictionary. It is an o(mn) algorithm,
performant but time costly when both strings to compare are long.

J.P. Redonnet — TexLexAn — Nov.,Dec, 2008 — Rev. 1.1 page 5/ 12

8 - Data structures

File mame: keyworder.'lang'.dic'n'
(lan:language abbreviated, n:number of words in keywords)
Function: dictionaries weighing each keyword

Structure: Class_number Class_name:/W;\term;/W,\term,/..../W;\term;/
The sequence /...\ delimits a number (the weight of the keyword)
The sequence \.../ delimits a group of words (a keyword).

Size: ~20KBytes/class (2 words/term) => File size ~10MBytes for 500 classes.

Tree structure of the class name

-true_strory

|-thriller-|-serial killer

-literature-|-scifi-|-alien invader

| | | -robot

text-|-study-|-scientific-|-physic-|-quantic

| | | -optic

|

| -chemistry-|-organic

| |

| -treat-| | -analytic
| -terrorisme-

9 - Programs

The job is divided in 5 programs, allowing more flexibility, requiring less
resources and facilitating the debugging. The text analyzer 'texlexan' and its
graphical frontend texlexan.py are designed to run on a workstation (document
analyze). The text analyzer alone can run on a server (emails, blogs
screening...). These programs could be released under the GNU public licence,
allowing the community to improve them.

9.1 Graphical frontend

Program name: texlexan.py

Function: Provide a confortable GUI between the program texlexan (runs in CLI)
and the user. Able to produce some graphics

Interface: graphic

Language: python + (pygtk)

9.2 Text Analyzer

Program name: texlexan

Function: Analyze a text. Recognize & convert charset. Recognize main language &
open the corresponding dictionaries, select the simplification & the plural to
singular conversion rule. Compute syllabes distribution and text readability.
Estimate reading time. Compute repetition.

Search & count same sentence occurrence. Weight keywords and finally list
classes

(text theme) per probability.

Interface: CLI (command line interface)

Language: c

Input Files: filename.txt (text to analyze) , keyworder.'lang'.dic'n'

J.P. Redonnet — TexLexAn — Nov.,Dec, 2008 — Rev. 1.1 page 6/ 12

Output Files: keywords.build (records are added at the end)
(lan:language abbreviated, n:number of words in keywords)

9.3 Dictionaries Builder

Program name: buildkeybase

Function: Split the keyword.build file in several dictionaries. There is one
dictionary for each class in each language for each number of words allowed in
one term.

Each dictionaries are updated: occurrences increased, terms added.

Nb of files = Nb of classes x Nb of languages x Nb of words/term

Interface: CLI

Language: c

Input Files: keyword.build

Output Files: text-'classname'.'lang'.dico'n'

(lan:language abbreviated, n:number of words in keywords)

9.4 Temporary Dictionnaries Builder

Program name: globalkeybase

Function: Convert plural in singular, regroup terms in a single file.

There is one dictionary for each class in each language for each number of words
allowed in one term.

There is one global dictionary for each class x each language x number of words

per term.
Nb of files = Nb of classes x Nb of languages x Nb of words/term + Nb of languages x Nb of words/term

These dictionaries are temporaries and used by statistic analyzer.

Each dictionaries are recreated.

Interface: CLI

Language: c

Input Files: text-'classname'.'lang'.dico'n' , text-generic.'lang'.dico'n'
Output Files: text-'classname'.'lang'.dico'n'.work , text-—
full.'lang'.dico'n'.work

(lan:language abbreviated, n:number of words in keywords)

9.5 Statistic analyzer

Program name: analyzekeybase

Function: Compute the weights, keep the most significant 'keyterms' (threshold
on the weights and the occurrences), normalize, record the final dictionaries.
There is one final dictionary for each language x number of words per term.
Interface: CLI

Language: c

Input Files: text-'classname'.'lang'.dico'n'.work

Output File: keyword.'lang'.dic'n'

(lan:language abbreviated, n:number of words in keywords)

Coding langquages prefered:

— Python to manage the graphical interface. This language is pretty slow
(bytecodes interpreted) but offers an excellent productivity, is easily portable
and many powerful libraries (graphics, statistics...)

- C (C/C++) where speed is required.

J.P. Redonnet — TexLexAn — Nov.,Dec, 2008 — Rev. 1.1 page7/12

10 - Improvements

Optimization:

— The strict search uses the strstr function from the standard c library. It is
an O(m*n) algorithm; the Boyet-More or Knuth-Morris-Prath O (m+n) algorithms
should be faster.

— The fuzzy string matching algorithm uses the Levenshtein distance O(m*n); Cole

R. and Hariharan R. [7] give two fastest algorithms for finding approximate
matches O(nkS/m+n+m) and O(nk4/m+n+m)
— A sound like string matching algorithm [8] (double metaphone) should give some

interesting results, the difficulty is to implement one for every language.

Learning algorithm classifier:
— Increase the weights of the terms found when the operator agrees the text
categorization (answer=YES) and decrease the weights when he refuses it.

Keyterms list:
— Limit the list of 'keyterms' to the most significants.

Dictionnaries sharing:

Collect via internet all the 'keywords.build' files (text name, 'keyterms' list
and frequency, class labelled) and merge them into a single large
'keywords.build' file. This large corpus of preprocessed texts will used to
create the dictionaries ready to use and to download.

Automatic summary:

Add a summarizing algorithm to the TexLexAn to complete the tools set of
TexLexAn. Pardo, Rina and Numes [9] use a combination of sentences scoring and
keywords to select the sentences to include in the summary. This method should
be easily implemented by reusing the sentences segmentation and keywords, both
already exist in the texlexan program.

11 - Conclusion

These programs are at their early developments, but theirs possibilities appear
promising and should interest a lot of people working on many text documents.

There are still a lot of work to improve the texts classification, in
particularly, to find a fast and good fuzzy string matching algorithm, to have a
good 'keyterms' weightings system, to make the program able to learn by itself
with the strict minimum of supervision. So certainly, the most difficult part of
this program is the texts classifications but its the most interesting too.

Finally, we did not find under the GNU licence a software including a plagiarism

detector, text classifier, summarizer, text readability and reading time, so
this one could be the first one.

J.P. Redonnet — TexLexAn — Nov.,Dec, 2008 — Rev. 1.1 page 8/ 12

10 - Annexes
10.1 - Flow charts

Program: TexLexAn

Text input
v
Characters coding
detection & conversion
v
Detect main language
v
Extract words (tokenizing)
&
mark sentence
Reject none significant words
Count syllabes
v
Compute repetition
of the same word
v
Extract & count
similar keyterms
Sort result

F:keyworder.build------ >Append--———-————— >keyworder.build

F:keyworder.lan.dicoN-------- >|

Search words (strict or levenstein)

Weigh Class

Sort result
|
A

Extract & count
similar words
Sort result

v
F:keywords.build------ >Append-—--—-————-— >keywords.build
|
F:keyworder.lan.dicN-------- >|
v

Search keywords (strict or levenstein)
Weigh Class
Sort result

J.P. Redonnet — TexLexAn — Nov.,Dec, 2008 — Rev. 1.1 page 9/ 12

Program: buildkeybase

File input:
Keywords.build

Class input-------- >|

Collect each
keywords & occurence
v

—————— >Append
v
File output:
class.lan.dicoN

F:class.lan.dicoN

Program: globalkeybase

File input:
class.lang.dicoN
A
Convert each plural
in their singular form

Create-—-——————- >F:class.lang.dicoN.work

F:full.lan.dicoN-————-

File output:
full.lan.dicoN

Program: analysekeybase

Files input:
class.lang.dicoN.work
&
full.lan.dicoN
|
A\
Compute for each keyword in
class.lang.dicoN.work the %

aij = xij/xi
v
Normalize
v

Keep the Z highest value
v
----- >Append
v
File output:
keyworder.lan.dicN

F:keyworder.lan.dicN

J.P. Redonnet — TexLexAn — Nov.,Dec, 2008 — Rev. 1.1

page 10/ 12

Learning loop:

The text to analyze is an ascii/utf8
file.

keyworder.lan.dico.N
contains classes, keyterms & weights

texlexan is the main program

Results are displayed and/or recorded.
The operator enters the class /
validate the results

keywords.build is updated with every
text analyzed. It contains all the
terms and theirs occurrences

buildkeybase places keyterms + occur.
in each class.

class.lan.dicoN contains keyterms +
occur. One file per class x language X
nb of words / term.

lan:language
N:nb of words/term

globalkeybase converts plurals in
singulars => occur. are updated.
Regroups all the class for one
language, one size of terms in
'full.lan.dicoN

analysekeybase computes the weights,
the threshold limits the number of
terms per class to most significants.
keyworder.lang.dicoN structure:
class_name:/weight\keyterm/....

Ex.keyworder.en.dico3 =>

text-literature-scifi:/9\brave-new-
world/.../7\light-year-away/

feyworder.lan.dico

keyworder.lan.dicoN -

B
l

Analyse:

texlexan

keywords.build

Screener:

buildkeybase

convert plural
Regroup classes

11 11 1

Compute weights
apply threshold:
analysekeybase

7

Class Input

10.2 References:

J.P. Redonnet — TexLexAn — Nov.,Dec, 2008 — Rev. 1.1

page 11/12

[1] Tkonomakis M., Kotsiantis S., Tampakas V. Text classification using machine
learning techniques. WSEAS TRANSACTIONS on COMPUTERS, Issue 8, Volume 4, pp
966-974 (August 2005)

[2] Gartner T., Flash P. Weighted Bayesian Classification based on support
vector machine (parag. 4 Comparison) Proceeding of the eighteenth International
Conference on Machine Learning (ICML-2001)
http://www.cs.bris.ac.uk/Publications/Papers/1000560.pdf

[3] Rennie J., Lawrence S., Teevan J., Karger D. Tackling the poor assumptions
of naive Bayes text classifiers. Proceeding of the twentieth international
conference on machine learning (ICML-2003)

[4] Ng Andrew, Jordan Michael On Discriminative vs. Generative classifiers: A
comparison of logistic regression and naive Bayes. http://citeseerx.ist.psu.edu
viewdoc/summary?doi=10.1.1.19.9829

[5] Zhang H. The optimality of naive Bayes (2004) American Association for
Artificial Intelligence.

[6] Salton G., Buckley C Term-weighting approches in automatic text retrival.
Information Proceesing & Management Vol 24, N° 5, pp 513-523 (1988)

[7] Cole R., Hariharan R. Approximate string matching: A simpler faster
algorithm SIAM J. COMPUT. Vol. 31 N°6 pp 1761-1782 (2002)

[8] Zobel Z., Dart P. Phonetic String Matching: Lessons from Information
retrieval. http://goanna.cs.rmit.edu.au/~Jz/fulltext/sigir96.pdf

[9] Pardo T.A.S., Rino L.H.M., Nunes M.D.G.V. Extractive summarization: how to
identify the gist of a text. International Information Technology Symposium
(2002) www.dc.ufscar.br/~lucia/articles/TI2TS2002-PardoEtAl.pdf

J.P. Redonnet — TexLexAn — Nov.,Dec, 2008 — Rev. 1.1 page 12/ 12

http://www.cs.bris.ac.uk/Publications/Papers/1000560.pdf
http://www.dc.ufscar.br/~lucia/articles/I2TS2002-PardoEtAl.pdf
http://goanna.cs.rmit.edu.au/~jz/fulltext/sigir96.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.9829
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.9829

