

TP 18: Mesures de pH de solutions aqueuses.

<u>Objectifs</u>: Mesurer le pH de solutions d'acide chlorhydrique et d'acide éthanoïque (acétique). Calculer le taux d'avancement final des réactions. Dégager les notions d'acide fort et d'acide faible. Expliquer l'origine du signe = dans les réactions acido-basiques.

I°) Acide chlorhydrique et acide acétique, quelle différence?

Vous disposez de deux solutions, une solution d'acide chlorhydrique de concentration $c = 5.0 \times 10^{-2} \text{ mol.L}^{-1}$ et une solution d'acide acétique (éthanoïque) de même concentration $c = 5.0 \times 10^{-2} \text{ mol.L}^{-1}$.

- l°) Etalonner le pHmètre (regarder la notice), puis mesurer le pH de chacune des solutions.
- 2°) Comment pouvez vous interpréter la différence entre les deux résultats?

II°) La réaction de l'acide éthanoique sur l'eau est-elle totale?

- ➤ Préparer, à partir de la solution mère d'acide éthanoique c₁=5,0×10⁻² mol.L⁻¹, des solutions filles de concentration c₂, c₃, c₄ respectivement égales à 1,0×10⁻² mol.L⁻¹, 5,0×10⁻³, 1,0×10⁻³. Indiquer le mode opératoire pour obtenir ces différentes solutions(utiliser la verrerie adéquat de façon à être le plus précis).
- Mesurer le pH de chaque solution puis en déduire [H₃O+], garder les solutions jusqu'à ce que les calculs du II°) soient terminés. D'autre part garder bien la solution de concentration 1,0 × 10-2 mol.L-1 qui servira dans le III°).

Concentration (mol.L-1)	5,0 × 10 ⁻² (C ₁)	1,0 x 10 ⁻² (C ₂)	5,0 × 10 ⁻³ (C ₃)	1,0 x 10-3(C ₄)
V prélevé mère (mL)				
Vfiole jaugée (mL)				
pН				
[H ₃ O ⁺] (mol.L ⁻¹)				

- l°) Ecrire l'équation de la réaction ayant lieu entre l'acide éthanoique et l'eau.
- 2°) Dresser un tableau d'avancement pour cette réaction quand l'acide éthanoique de concentration $c_2=1,0\times 10^{-2}$ mol. L-1 réagit totalement avec l'eau (on raisonnera sur un volume V quelconque du mélange réactionnel).
- 3°) Comparer l'avancement obtenu dans la pratique x_{final} à l'avancement maximal dans le cas d'une réaction totale entre l'acide acétique et l'eau (utiliser le pH et raisonner toujours sur un volume V quelconque du mélange réactionnel). Conclure.
 - 4°) Pour chaque solution calculer le taux d'avancement $au = \frac{x_{\mathit{final}}}{x_{\mathit{max}}}$.
- 5°) Que dire de l'évolution de au en fonction de la concentration initiale de l'acide ?

Solutions	C_1	Ca	Сз	C4
Xfinal				
$\tau = \frac{x_{final}}{x_{\text{max}}}$				

III°) La réaction a lieu dans les 2 sens :

Soit la réaction entre CH₃COOH (aq) et l'eau qui donne CH₃COO-(aq) et H₃O+.

Dans les tableaux d'avancements ci-dessous vous n'indiquerez que l'état initial et l'état final.

Tableau pour la lère expérience :

	CH3COOH	H ₂ O	H ₃ O+	CH ₃ COO-(aq)
Etat Initial		Excès		
Etat final		Excès		

Tableau pour la 2^{ième} expérience:

	CH3COOH	H ₂ O	H ₃ O ⁺	CH ₃ COO-(aq)
Etat Initial		Excès		
Etat final		Excès		

On utilisera la solution de concentration $c_2 = 1,0 \times 10^{-2} \text{ mol.L}^{-1}$; répartir 20 mL de cette solution dans 2 béchers.

- 1) Puis ajouter 4 gouttes d'acide acétique pur dans un bécher contenant la solution de concentration c₈... Mesurer le pH, puis en déduire [H₃O+]. Dresser un tableau d'avancement sommaire pour cette expérience (l'état initial pour cette expérience correspond à l'état final obtenu dans le II pour c₂ avec 4 gouttes d'acide acétique pur en plus).
- 2) De même ajouter une pointe de spatule d'éthanoate de sodium dans un bécher contenant la solution de concentration c₂. Renouveler l'étude précédente (l'état initial pour cette expérience correspond à l'état final obtenu dans le II pour c₂ avec un peu de CH₃COO- solide en plus).

 En déduire dans quel sens a évolué la réaction entre l'acide acétique et l'eau?
- 3) Conclusion : comment traduire symboliquement au niveau de la réaction les deux expériences précédentes ?

POL TP 18: TERMINALE S1 LUNDI 8 avril 2013

T.P:T.S.

Mesures de pH de solutions aqueuses.

Matériel.

<u>Bureau</u>:

- -éthanoate de sodium en poudre (CH3COONa) + spatule
- -acide acétique pur (CH₃COOH) :petit flacon de 60ml+pipette simple

Produits pour 20 groupes de TP:

- -solution acide éthanoïque (CH $_3$ COOH) à 5,0.10 $^{-2}$ mol/L : 1L
- -solution d'acide chlorhydrique (HCl) à 5,0.10⁻²mol/L : 0,5L
- -prévoir 50g d'éthanoate de sodium

Matériel par grpes :

- -1becher 250ml FH
- -1pissette
- -1pHmétre + électrode + solutions tampon
- -1fiole jaugée de 50ml
- -1fiole jaugée de 100ml
- -1pipette jaugée de 2ml
- -1pipette graduée de 5ml
- -1pipette jaugée de 10ml
- poires à pipetter
- -4bechers de 100ml
- -1compte-gouttes
- -gants
- Lunette
- -1spatule
- -lagitateur magnétique+barreau
- -1 éprouvette de 30 ml(ou 50 mL)