Exercice 1:

Reproduire et compléter le tableau suivant sur votre copie (lire, apprendre et appliquer l'annexe) :

Valeur exacte		20 000 7	$\frac{\pi}{30}$	3√7 − 9
Affichage calculette				
Valeur approchée	par défaut			
à 10 ⁻² près	par excès			
Valeur arrondie	à 10 ⁻³ près			
	à 4 chiffres significatifs après la virgule			
Troncature à 10 ⁻⁴ près				

Exercice 2:

Traduire en langage mathématique chacune des phrases suivantes :

Le double de l'inverse de a + 1.

Le quotient de a par la somme de 3 et double de a.

La différence du carré de a par le carré de b.

Le produit de a par la somme de b et du double de c.

La somme du double du carré de a et du produit de a par b.

La somme de l'inverse de *b* et du double de *a*.

L'inverse de la somme de *b* et du double de *a*.

Exercice 3 : (Construction de nombres à la règle et au compas)

L'unité est le centimètre.

(C) est un demi-cercle de centre B et de diamètre [DT].

On note x le rayon de ce demi-cercle (x est un nombre fixé supérieur à 1).

M est le point du segment [BD] tel que DM = 1

La perpendiculaire à la droite (BD) passant par M coupe le demi-cercle (C) en A.

- 1°) Montrer que AM = $\sqrt{2x-1}$.
- 2°) En utilisant un autre triangle, exprimer AD en fonction de x.
- 3°) En utilisant les deux questions précédentes, déterminer deux valeurs de x qui permettent d'obtenir un segment de longueur $\sqrt{10}$.