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ABSTRACT. A new microcomputer program using a simple finite 

differences algorithm has been devised and applied to the simulation of  the 

movement of a water wave generated by a piston-type wavemaker moving at 

a constant speed in a channel.  

A grid is applied on the fluid domain, dividing it  into quadrilateral cells 

where the pressure is constant and in quadrilateral elements obtained by 

joining the four immediate neighbours  of the current node of the grid. 

During a time increment, an element is considered as a translating solid on 

which the surface forces are constant along each side. The body forces are 

constant in the whole element. After having computed the resultant force, 

Newton's law is applied and the displacement obtained by integrating twice 

the acceleration, using first order finite differences. 

The computing method has been validated by comparison with 

experimental and numerical results from  the literature involving large free 

surface motion. The crashing of a wave has been successfully simulated. By 

varying depth and wavemaker speed, it was found that, while the base of  the 

wave has a speed depending only on the depth, the crest has a speed twice 

that of the wavemaker.The screen of the microcomputer was filmed by a 

camera triggered by the microcomputer. 
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1. INTRODUCTION 

 

The movement of water waves has been studied for one century by many 

authors (Longuet -Higgins (1980), Larras (1979)). The first reported 

numerical calculations of a crashing wave seems to be those of W.E. Pracht, 

in Fernbach and Taub(1970), by numerical techniques (Eulerian description 

and finite differences). Recent papers try to compute the shape of a breaking 

wave by analytical methods (Greenhow (1983), Peregrine (1983), New et al. 

(1985), Baker et al. (1982)).  With the advent of microcomputers, it may 

become easier to use simple iterative methods  resulting in small programs 

than analytical methods needing heavy intellectual efforts or sophisticated 

numerical methods on large computers (Schaeffer (1988). The computing 

times on microcomputers may still be long, but the gap with large computers 

is becoming smaller every year. The method described in this paper has been 

validated on numerical examples from the literature (Welford  and Ganaba 

(1981), Pedersen and Gjevik (1983)) and will be applied here to very large 

amplitude  gravity waves.  



 

 

 

 

 

 

 

 

 

 

 

 

 

2. BASIC EQUATIONS 

 

List of symbols: 

 

c : speed of sound 

C : boundary between free surface and inside parts of !'  

d : diagonal vector of a cell 

D  : domain of the physical space 

dl : line element 

ds : surface element 

dv : volume element 

F : force  

g : acceleration of gravity vector  

i  : index  

K : bulk modulus 

l  : length of a side of a "solid element" 

m : mass 

n : outer normal unit vector  

p  : pressure  

R : resultant force 

t : time 

t : tangent unit vector 

v : velocity vector 

x : position vector 

° : initial value 

!  : acceleration vector 

"t :time increment 

# : specific mass 

" : domain occupyied by fluid particles 

"' : domain occupyied by fluid particles having a free surface 

portion 

! : boundary of domain " 

!' : boundary of domain "' 



 

 

 

 

 

 

 

 

 

 

 

 

 

Let us consider (fig. 1) a domain !, bounded by a surface !, occupied by 

a set of fluid particles that we follow in their movement in a fluid domain D  

of the physical space . The fluid contained in ! moves under the action  of 

volume forces  (gravity),  surface forces (pressure) and line forces  (surface 

tension). If the domain is at the boundary of  two different media, like !’, 

there is a surface tension along the part of the boundary !’ which separates 

the element from the other medium. For small elements we may suppose that 

the pressure is constant in the element and may neglect rotation.  The surface 

tension, if any, is an external force only at the limit C  between the interior 

and free surface parts of the frontier !’ . 

 
Figure 1.  Physical domain of the fluid dynamic problem. 

 

Applying Newton's second law of motion in the integral form, we may 

write: 

 
If the acceleration is constant in the fluid domain ",  equation (1)  may be 

simplifyied: 



 

 

 

 

 

 

 

 

 

 

 

 

 
where  

(3)  m = !!!
!
"

#

!
!!
!
"

#

!
!!
!
"

#
$

% dV = constant

 
 From this equation, provided the variables on the right-hand side are 

known, the new position of the center of gravity is obtained by integrating 

twice equation (2). For a liquid, the surface tension T is constant and the 

pressure p is given by the equation of state. 

 

3. NUMERICAL MODEL 

 

The equation (1) of the movement is solved by discretisation of  time and 

fluid space. Time is divided into constant time intervals #t. A two-

dimensional grid (not necessarily rectangular) divides the fluid, assumed to 

be of unit thickness, in quadrilateral cells in which the pressure is constant. 

With  each node of the grid is associated a "solid element" obtained by 

joining the four immediate neighbours of the node. This quadrilateral element 

is considered as a solid moving without rotation during a time increment 

under the action of the body and surface forces. Hence, the node has the same 

movement as the center of gravity of the element. A cell is shared by two 

adjacent elements (fig. 2) and therefore Newton's third law of action and 

reaction is satisfyied. The difference with classical finite difference or finite 

elements methods is that the "solid element" is a contour and not a set of 

nodes. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.  Cells of uniform pressure (rectangular) and "solid" elements 

(hatched losanges) inside the fluid and at the free surface. 

 

The elements on the boundary are "contracted", that is, the part of the 

element outside the fluid domain has zero mass, zero volume but prescribed 

pressure. With this method, it is not necessary to define special elements on 

the boundary. On the free surface, for each element, the action of the surface 

tension is described by two forces acting along the two sides of the element 

coinciding with the free surface. 

Figure 3 shows how the continuous medium is divided. The 

displacements and accelerations are computed on the nodes. A mesh is a 

quadrilateral of material where the pressure is constant. An element is the 

contour on which is applied Newton's law, the resultant force being applied to 

the central node. 

The pressure in a cell is proportional to the ratio of  the change in area to 

the initial area of the cell. For a quarilateral, the pressure is simply related to 

the cross  products of the diagonals of the cell: 

 
Constant pressure is assumed on the free surface. On rigid boundaries, 

there is free gliding (except at the lower corners) with normal speed equal to 



 

 

 

 

 

 

 

 

 

 

 

 

the normal speed of the boundary, if the boundary is moving, zero otherwise. 

Surface tension is constant in absolute magnitude and acts tangentially to the 

free surface. 

 

The resultant effort applied on an element is computed by adding 

vectorially the weight and the forces applied on each of the four sides of the 

element. These forces Fi are normal to the sides of the element: 

(5)     Fi= - pi nili    



 

 

 

 

 

 

 

 

 

 

 

 

The resultant force on a solid element is                

(6) R =  !
i=1

4

F
i

 
 

Nodes Mesh

Element
Forces on an element  

 

Figure 3. A "solid element" is made from four half meshes. 

 

 

At each time step, the acceleration, computed by application of Newton's 

law, 

 



 

 

 

 

 

 

 

 

 

 

 

 

where m is the mass of an element, is integrated numerically twice 

according to the formulæ: 

 

(8) V(t) = V(t-"t) + !  (t) "t 

 

(9) X(t) = X(t-"t) + V (t) "t 

 

The fluid is initially at rest. At time 0, the external pressure and the 

gravity are instantaneously applied. It was necessary to use surface tensions 

much larger than the value for water. The general stability condition was that 

the Courant number, computed with the speed of sound (not the wave speed) 

had to be less than one for the smallest cell dimension. In order to minimize 

the computing time, small values of sound speed were used. 

The computation was programmed with the help of UCSD Pascal on an  

Apple ][ and later on a Macintosh microcomputer. With the latter, the 

calculation  takes 40 ms per computing cycle and per node instead of 200 ms. 

On a Macintosh II, if compiled to the arithmetic coprocessor, this time is 

reduced to a few milliseconds. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Run-up of a solitary wave generated by the movement of a 

wavemaker at a speed of 0.2 m/s during 0.5 second with an  initial water 

depth of 0.15 m. and an external pressure of 1 kPa. The speed of sound is 10 

m/s, the surface tension is 10 N/m and the specific mass is 1000 kg/m3 

(Schaeffer (1985)). 



 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Simulation of a breaking wave. Time sequences of wave 

overturning with the same conditions as on figure 4 except that the speed of 

the wavemaker is 1 m/s instead of 0.2 m/s. 



 

 

 

 

 

 

 

 

 

 

 

 

4. Numerical examples 

 

Many experimental and theoretical results of gravity wave propagation may 

be found in the literature. The configuration studied by Pedersen and Gjevik 

(1983) numerically  and experimentally was chosen to validate the method. 

Figure 4 shows the configuration used. The fluid, initially at rest, is put in 

motion by a wavemaker moving at a constant speed and then stopping. The 

wave propagates from left to right towards the beach.  The figure may be 

compared directly with the photographs taken by Pedersen and Gjevik 

(1983). Although the calculation shows numerical "turbulence", the 

agreement with their experimental results is satisfying. In this particular case, 

the method does not give better results than theirs except that these 

calculations are truly bidimensional and therefore allow the simulation of 

wave overturning.  

A second calculation was performed with a  speed of the wavemaker 

approaching the critical wave speed, giving a large amplitude wave (fig. 5). 

The influence of depth has been visualised on fig. 6, showing calculations for 

three different depths.Wave breaking occurs when piston speed is less than 

the critical speed, e.g. when the depth is 0.1 m, as predicted by Lagrange's 

formula, v = $gh. The same has been done on fig. 7, but with varying piston 

speed. The speed of the bottom of the wave is given by Lagrange's formula. 

The crest propagates at a speed independant of depth, twice the piston speed. 

 

Initial depth: 0.5 m 

 
 

Initial  depth: 0.2 m 



 

 

 

 

 

 

 

 

 

 

 

 

 
 

Initial depth: 0.1 m 

 
Figure 6. Influence of depth for a piston moving at a constant speed of 1 m/s, 

at the same moment (0.58 s). The bottom of the wave moves at a speed 

increasing with depth, but the crest propagates at the same speed, 

independant of depth. 

 

 
 

 
 

 
 

Figure 7. Influence of piston speed (0.1 - 0.5 - 1 m/s) on wave propagation at 

the same time (t= 0.58 s).  Depth: 0.1 m. Wave speed is twice the piston 

speed. 

 

5. DISCUSSION 



 

 

 

 

 

 

 

 

 

 

 

 

 

The incompressibility hypothesis is usually considered as a simplifying 

assumption, but it is also possible to use the reverse approximation, that is to 

replace the slightly compressible fluid by a more compressible fluid, 

provided that the volume change may be neglected. It will be true if the 

Mach number is smaller  than, for example 0.1.  

The main stability criterion is the Courant-Friedrichs-Lewy criterion 

restricting the distance a wave travels in one time increment to less than one 

space interval (Hirt (1968)). It applies to the sound speed,  not to the gravity 

wave speed, for a  Mach number  smaller than one. Numerical instabilities, 

associated to other criterions, appear  after a few thousand iterations.  

 

6. CONCLUSIONS 

 

An explicit Lagrangian prediction algorithm for two-dimensional 

compressible flow with free surface has been formulated and applied to 

solitary wave generation, propagation, run-up and overturning.  In spite of its 

simplicity, the method takes into account non-linearity, compressibility, free-

surface movement and surface tension. For practical reasons (stability and 

computing time), the numerical values for the physical properties may be 

different from those of water, but this has only a slight incidence on the 

numerical results. 

Another advantage of the simplicity of the method its ability to work on 

microcomputers. It should be useful  for the simulation of the two-

dimensional problems of fluid mechanics that can be solved in the 

Lagrangian description. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. REFERENCES 

 

 

Baker, G.R., Meiron D.I. and Orszag S.A., "Generalized vortex methods for 

free-surface flow problems", J. Fluid Mech., n° 123, 1982, p. 477. 

Fernbach, S. and Taub, A. - Computers and their Role in the Physical 

Sciences, Gordon and Breach, New York, 1970. 

Greenhow, M. - 'Free-surface flows related to breaking waves',     J. Fluid 

Mech., 1983, 134, 259. 

Hirt C.W. - 'Heuristic Stability Theory for Finite-Difference Equations', J. 

Comp. Phys., 1968, 2, 339. 

Larras, J., "Physique de la Houle et des lames", Eyrolles, Paris, 1979. 

Longuet-Higgins M.S., "The unsolved problem of breaking waves", Proc. 

Conf. Coastal Eng., 17th, 1980, pp. 1-28. 

New A.L., McIver P. and Peregrine D.H. - 'Computations of overturning 

waves', J. Fluid Mech., 1985, 150, 233. 

Newell, A.C., "The History of the Soliton", J. Appl. Mech., n° 50, 1983, p. 

1127. 

Pedersen G., Gjevik B. - 'Run-up of solitary waves', J. Fluid Mech., 1983, 

135, 283. 

Peregrine, D.H. - 'Breaking Waves on Beaches', Ann. Rev. Fluid Mech., 

1983, 15, 149. 

Schaeffer B., "A lagrangian 'solid' element method for large amplitude 

movement of a compressible fluid with free surface", 4th Int. Conf. 

Num. Meth. Laminar Turbulent Flow, Swansea 1985. 

Schaeffer B., "Possibilités des microordinateurs - simulation numérique d'une 

vague déferlante, dont le mouvement en profondeur et le profil sont 

calculés par microordinateur" ATMA, 88ème session, Paris, 1988. 

Welford, L.C.,  Ganaba, T.H. - 'A finite element method with a hybrid 

Lagrange line for fluid mechanics problems involving large free surface 

motion', Int. J. Num. Methods Eng., 1981,17, 1201. 

 




