

DM 4 – Géométrie dans le triangle, théorème de Thalès

- 1) Dans la figure ci-dessus, que peut on dire des longueurs IA et IA'?
- 2) Théorème de Thalès dans la figure ci-dessus :
 - Quelles sont les droites parallèles ? Les sécantes ?
 - Quel est le point d'intersection des sécantes ?
 - Quels sont les quotients qui sont égaux ?
- 3) Avec la question 1) que peut on dire des quotients $\frac{IA}{BJ}$ et $\frac{IA'}{BJ}$?
- 4) Que peut on dire alors des trois quotients $\frac{OA}{OB}$, $\frac{OI}{OJ}$ et $\frac{IA'}{BJ}$?
- 5) La relation trouvée entre $\frac{OI}{OJ}$ et $\frac{IA'}{BJ}$ analogue à celle du théorème de Thalès permet-elle de conclure que les droites (IA') et (JB) sont parallèles ?
- 6) Peut-on alors véritablement utiliser le troisième quotient du théorème (entre les longueurs des segments intérieurs aux deux sécantes) pour énoncer une réciproque de ce théorème de Thalès ? Pourquoi ?

DM 4 – Géométrie dans le triangle, théorème de Thalès

- 1) Dans la figure ci-dessus, que peut on dire des longueurs IA et IA'?
- 2) Théorème de Thalès dans la figure ci-dessus :
 - Quelles sont les droites parallèles ? Les sécantes ?
 - Quel est le point d'intersection des sécantes ?
 - Quels sont les quotients qui sont égaux ?
- 3) Avec la question 1) que peut on dire des quotients $\frac{IA}{BJ}$ et $\frac{IA'}{BJ}$?
- 4) Que peut on dire alors des trois quotients $\frac{OA}{OB}$, $\frac{OI}{OJ}$ et $\frac{IA'}{BJ}$?
- 5) La relation trouvée entre $\frac{OI}{OJ}$ et $\frac{IA'}{BJ}$ analogue à celle du théorème de Thalès permet-elle de conclure que les droites (IA') et (JB) sont parallèles ?
- 6) Peut-on alors véritablement utiliser le troisième quotient du théorème (entre les longueurs des segments intérieurs aux deux sécantes) pour énoncer une réciproque de ce théorème de Thalès ? Pourquoi ?