PRECLINICAL STUDY REPORT

A GLOBAL SERVICE PROVIDER OF PRECLINICAL AND CLINICAL RESEARCH IN OPHTHALMOLOGY

IRIS PHARMA Study Number: N50F25612

Non-GLP Study

ML7.

EVALUATION OF TOPICAL ADMINISTRATIONS OF ML7 IN A RAT MODEL OF SCOPOLAMINE-INDUCED DRY EYE.

IRIS PHARMA for Neuroptis Biotech

Study Director: Laurence FERAILLE, Ph.D. Sponsor Representative: Djamel HAMANI, Ph.D.

Study Report version 2 – 41 pages

Table of Content

1.	SUMMARY	5
2.	STATEMENT	6
3.	GENERAL INFORMATION	7
3.1.	Test facility	7
3.2.	Sponsor	
	General information	
	.Study dates	
	Confidentiality	
4.	INTRODUCTION	
	Background	
	Objective	
.	MATERIAL	
5. 6.	ANIMALS AND HUSBANDRY	
•••	Animals	-
	Animais	
	Identification	
	Clinical examination and health status	
	Housing	
	Animal husbandry	
6.2.2	. Food and water	
7.	DESIGN AND PROCEDURE	
	Study design	
	Experimental procedure	
	Animal selection and randomization	
7.2.2	General clinical signs	12
7.2.2	1. Body weight	12
7.2.2	2. General appearance	12
	Induction of dry eye	
	Ocular clinical signs	
	.1. Measurement of aqueous tear production	
	.2. Fluorescein staining	
	. In life phase termination	
8.	DATA PROCESSING	
9.	STATISTICAL ANALYSIS	
- ·	RESULTS.	
	Study plan amendments and deviations	
	General behavior and mortality	
	Animal body weight	
	Aqueous tear production	
	Corneal fluorescein staining	
	ARCHIVING OF DATA	
13.	REFERENCES	-
	APPENDICES	
	Corneal staining	
	Table 8: Summarized data	
	Tables 9-16: Individual data	
14.3.	1.Tables 9-12: Tear production evaluation	19
14.3.	2.Tables 13-16: Corneal staining	26
	Tables 17-19: Individual data animal body weight	
14.5.	Tables 21-22: Statistical analyses	36
	Certificate of analysis of scopolamine	
14.7	Certificate of analysis of ML7	39
	Certificate of analysis of placebo	
	· · · · · · · · · · · · · · · · · · ·	-

14.9. Coding instructions	41
List of Tables	
Table 1: Material table – Test item	7
Table 2: Material table – Control item	
Table 3: Material table – Reference item	
Table 4: Study design	
Table 5: Schedule table	
Table 6: Animal allocation	
Table 7: Animal body weight (in g)	
Table 8: Evaluation of dry eye symptoms in albino rats	
Table 9: Tear production evaluation with three instillations/day (Placebo)	
Table 10: Tear production evaluation with three instillations/day (ML7)	
Table 11: Tear production evaluation with cyclosporin (per os) 1x/day	18
Table 12: Tear production evaluation with no induction (Naïve)	
Table 13: Corneal staining evaluation with three instillations/day (Placebo)	20
Table 14: Corneal staining evaluation with three instillations (ML7)	
Table 15: Corneal staining evaluation with cyclosporin (per os) 1x/day	22
Table 16: Corneal staining evaluation with no induction (Naïve)	23
Table 17: Body weight without treatment	
Table 18: Body weight with three instillations (Placebo)	24
Table 19: Body weight with three instillations (ML7)	24
Table 20: Body weight with with cyclosporin (per os)	25
Table 21: Corneal staining Sidak's test (Naïve vs. Placebo groups)	26
Table 22: Corneal staining Dunnett's test (ML7, Placebo and Cyclosporine	
A-treated groups)	27

List of Figures

Figure 1: Tear production measurement	11
Figure 2: Corneal fluorescein staining	12

1. SUMMARY

Purpose:

The aim of the study was to evaluate the therapeutic potential of topical applied ML7 formulation in a rat model of scopolamine-induced dry eye.

Method:

Dry eye symptoms were induced in albino Lewis female rats by systemic scopolamine diffusion (20 mg/day) over 21 days. Rats were randomized into 4 groups. One group was not induced and not treated (naïve group). The other groups were induced and received either three instillations of ML7, or three instillations of Placebo per day (TID) from the day of induction to the end of the study on Day 21. Oral Cyclosporine A treatment (25 mg/kg/day) from Day 0 to Day 21 was used as reference.

Tear production was measured using the phenol red thread test and corneal fluorescein staining was scored using the standardized National Eye Institute (NEI) grading system.

<u>Results:</u>

Scopolamine reduced tear production and increased corneal fluorescein staining after 7 days of induction and over a 3-week period.

3 rats were humanely euthanized, two in Placebo-treated group and one in Cyclosporine A-treated group because of edema and skin necrosis at the pump implantation sites.

Topical application of ML7 (TID) failed to improve tear production. The tear volumes were similar to those of the Placebo-treated group.

Topical application of ML7 (TID) reduced significantly corneal fluorescein staining after 7 days of treatment in comparison with the placebo treatment. After 21 days of treatment, the corneal staining was lower than in the vehicle group, however no statistical analysis could be performed at this time-point due to the number of animals left in the vehicle group (2 euthanized animals for ethical reason).

As expected, oral administration of Cyclosporine A improved tear production and reversed corneal staining by 3 weeks of treatment.

Conclusion:

Oral administration of Cyclosporine A improved tear production and reversed the corneal staining by 3 weeks of treatment and validated the assay.

Topical administration of ML7 was effective to reverse the corneal staining induced by the scopolamine on Day 7.

2. STATEMENT

ML7.

EVALUATION OF TOPICAL ADMINISTRATIONS OF ML7 IN A RAT MODEL OF SCOPOLAMINE-INDUCED DRY EYE.

MANAGEMENT AND STUDY DIRECTION

Director of Test Facility: Pierre-Paul ELENA, Ph.D.

Signature

Date

I, the undersigned, declare that this study was performed according to the study plan and I assume the responsibility of the validity of reported data.

Study Director:

Laurence FERAILLE, Ph.D.

Signature

Date

3. GENERAL INFORMATION

3.1. Test facility

<u>Address</u> IRIS PHARMA Les Nertières Allée Hector Pintus FR-06610 LA GAUDE <u>Study Director</u> Laurence FERAILLE, Ph.D. IRIS PHARMA Tel: +33 493 59-4959 Fax: +33 493 59-4950 e-mail: <u>I.feraille@iris-pharma.com</u>

3.2. Sponsor

<u>Address</u> NEUROPTIS BIOTECH 9 Avenue Maximilien de Robespierre FR-94400 VITRY SUR SEINE <u>Sponsor Representative</u> Djamel HAMANI, Ph.D. NEUROPTIS BIOTECH Cell: +33 610 296 499 e-mail: <u>djamel.hamani@neuroptis.com</u>

3.3. General information

3.3.1. Study dates

Study plan version 1 (final version) signed on:September 2nd, 2013Start of experimental phase:September 2nd, 2013End of experimental phase:September 23rd, 2013Preliminary results:September 26th, 2013Report version 1:January 14th, 2014Report version 2:January 08th, 2015

3.3.2. Confidentiality

All employees of Iris Pharma are contractually bound by a confidentiality clause.

4. INTRODUCTION

4.1.Background

Dry eye syndrome, along with cataract and AMD, the main eye pathology in the elderly population. About 15 to 25% of the population aged over 65 is treated with tear substitutes.

The causes of dry eye syndrome are varied and include both lacrimal hyposecretion or hypersecretion. The classification [1] differentiates dry eye by hyposecretion syndromes, such as Sjögren's syndrome and syndromes with dry tear film instability. This category comprises allergies, blepharitis, meibomis malfunctions, rosacea, and environmental factors [2]. In recent years, many discoveries have significantly changed the understanding of dry eye. Investigation of the lacrimal and meibomian gland functions in animal models and patients unveiled the important role played by inflammation of the ocular surface and lacrimal gland [3] as well as the involvement of hormonal factors [4] or the existence of anomalies of the tear and meibomian glands. On the other hand, malfunctions at the interconnections between nerves of the ocular surface, eyelids and the main lacrimal glands have been clearly implicated in the genesis of dry eye [5].

Substitution tears are the basis of the treatment of dry eye. But new treatments targetting immunological, inflammatory and hormonal causes are under development. Cyclosporine is a typical representative of this new generation of treatments.

4.2. Objective

The aim of the study was to evaluate the therapeutic potential of ML7 in a rat model of scopolamine-induced dry eye.

N50F25612 r2

8

Confidential

5. MATERIAL

Table 1:	Material	table -	Test item
----------	----------	---------	------------------

Material	Test item
Test article	ML7
Batch number	E753-2
Supplier	Octalia technologies
Characteristics	Solution
Preparation (concentration)	0.1%, ready to use
Number of administration per day	3
Volume needed per day (theoretical – practical)	60 μL - 100 μL
Storage conditions and stability (before/ after preparation, before/after opening)	At +2° to +8°C
Documentation	CA, MSDS, CS formulation protocol

Table 2: Material table – Control item

Material	Control item 1
Denomination	Placebo
Characteristics	Solution
Supplier	Octalia technologies
Batch number	E753-1
Number of administration per day	3
Volume needed per day (theoretical – practical)	60 μL - 100 μL
Preparation (concentration)	Ready to use
Storage conditions and stability (before/ after preparation, before/after opening)	At +2° to +8°C
Documentation	CA, MSDS, CS formulation protocol

Table 3: Material table – Reference item

Material	Reference item
Denomination	Cyclosporine A (Sandimmune®)
Characteristics	Solution
Supplier	Iris Pharma
Batch number	Not yet available
Number of administration per day	Once a day

Volume/amount needed per day (theoretical – practical)	6 mg, 600 µL per day
Preparation (concentration)	25 mg/mL

Storage conditions and stability (before/ after preparation, before/after opening)	Room temperature	
Documentation	CA, MSDS, CS formulation protocol	

Disposition of test item:

Following the completion of the experimental phase, empty containers of test item were discarded according to Iris Pharma standard operating procedures. The remaining of test item was sent back to Octalia.

Disposition of control item:

Following the completion of the experimental phase, empty containers of control item were discarded according to Iris Pharma standard operating procedures.

Disposition of reference item:

Following the completion of the experimental phase, empty containers of reference item were discarded according to Iris Pharma standard operating procedures.

6. ANIMALS AND HUSBANDRY

All standard operating procedures and protocols described in this study plan had been reviewed by Iris Pharma Internal Ethics Committee. All animals were treated according to the Directive 2010/63/UE European Convention for the Protection of Vertebrate Animals used for Experimental [6] and Other Scientific Purposes and to the Association for Research in Vision and Ophthalmology (ARVO) Statement for the Use of Animals in Ophthalmic and Vision Research [7].

6.1. Animals

6.1.1.Animals

Species:	Rat. This is the strain most commonly used in this model [8-9].
Strain:	Lewis (albino).
Age:	Approximately 6-7 weeks.
Weight:	150 - 175 g (on ordering).
Number/sex:	100 males (study 91; reserve 9).
Breeder:	"ELEVAGE JANVIER" - FR-53941 LE GENEST-ST-ISLE.

6.1.2. Identification

All animals were identified by tag on tail following the inclusion examination.

6.1.3. Clinical examination and health status

Animals were held in observation for 4 weeks following their arrival. They were daily observed for signs of illness and particular attention was paid to their eyes.

6.2. Housing

6.2.1. Animal husbandry

Animals were housed by at least two and four at the most in standard cages, under identical environmental conditions. The temperature was held at $22 \pm 2^{\circ}C$ and the relative humidity at $55 \pm 10^{\circ}$. Rooms were continuously ventilated (15 air volumes per hour). Temperature and relative humidity were continuously controlled and recorded. Animals were routinely exposed (in-cage) to 10-200 lx light in a 12-hour light and darkness cycle.

6.2.2. Food and water

Throughout the study, animals had free access to food and water. They were fed the standard dry pellet diet LASQCdiet[®] Rod16-H (Lasvendi GmbH, Soest Germany). Tap water, regularly analyzed, was available *ad libitum* from plastic bottles.

7. DESIGN AND PROCEDURE

7.1. Study design

The Table 4 below summarizes the study design:

Table 4: Study design

	Numb			Treatment		Clini	cal eval	uation
	er of animal	f Induction	Name	Dosing Regimen From D1 to D21	Route of administration	Body weight	PRT	Corneal staining
1	10	Subcutaneous	ML7	Three time a	Instillation (10			
2	10	scopolamine infusion	Vehicle	day	μl) in both eyes	Baseline	Base	eline, D7,
3	10	20 mg/day	Reference (CsA)	Once daily	Per os 1 mL/kg	once a week	D14	and D21
4	5	No	-	-	-			

The Table 5 below summarizes the schedule:

Table 5: Schedule table

Day	Design
Baseline	Phenol red thread (PRT) test and corneal staining
D0	Placement of scopolamine pump
D1- 6	Administration
D7	Administration + PRT and corneal staining
D8-13	Administration
D14	Administration + PRT and corneal staining
D15-20	Administration
D21	PRT and corneal staining + sacrifice

The animals were allocated to coded treatment groups (**Table 6**). The investigators were kept masked to the treatment groups throughout the study.

Table 6: Animal allocation

Group number	Animal ID	Treatment
1	1, 2, 3, 4, 5, 6, 7, 8, 9, 10	Placebo (code A)
2	11, 12, 13, 14, 15, 16, 17, 18, 19, 20	ML7 (code B)
3	21, 22, 23, 24, 25, 26, 27, 28, 29, 30	Cyclosporin A
4	31, 32, 33, 34, 35	Naïve

7.2. Experimental procedure

7.2.1. Animal selection and randomization

Thirty-five (35) animals were selected based on good health and homogeneous body weight. Animals with no visible sign of ocular defect were randomly assigned to the study groups, using a function in Excel[®] software based on the mean of the corneal fluorescein staining scores from both eyes at baseline.

7.2.2. General clinical signs

7.2.2.1. Body weight

Body weights were recorded during the pre-test period (baseline) and once a week.

7.2.2.2. General appearance

General clinical signs and appearance of all animals were observed daily.

7.2.3. Induction of dry eye

Scopolamine was continuously and systemically delivered to the animals by an osmotic pump (2 ML4 Alzet; Charles River Laboratoires) filled with scopolamine and implanted subcutaneously on Day 0.

Pumps delivered 20 mg/day of a scopolamine solution over 21 days.

The pump was filled as mentioned in the procedure provided by Alzet[®]. Briefly, the pump was placed in sterile 0.9% NaCl overnight before implantation. Then the pump was filled with the scopolamine solution (280 mg/mL in 0.9% NaCl) using a syringe and a blunt-tipped filling tube.

Once the animal was anesthetized, the skin was shaved and scrubbed with betadine[®] over the implantation site.

An incision was made on the back of the animal and a hemostat inserted into the incision, and by opening and closing the jaws of the hemostat, the subcutaneous tissue was spread to create a pocket for the pump. The filled pump was inserted into the pocket, delivery portal first. The wound was closed with wound clips.

7.2.4. Ocular clinical signs

7.2.4.1. Measurement of aqueous tear production

Tear production was measured with the phenol red thread test (Zone-Quick, FCI-Ophthalmics) on both eyes. The threads were placed in the lateral cantus of the lateral conjunctival fornix for 30 seconds. The thread was wet by the tear and turned red, indicating the aqueous tear production. This data was expressed in millimeters.

7.2.4.2. Fluorescein staining

At the different time points, eyes were examined by slit-lamp observation using blue light after 0.5% fluorescein eye drop instillation (0.5 μ L). Punctuate staining was recorded with standardized National Eye Institute (NEI) grading system giving a 0-3 score to each of the 5 areas in which the corneas were divided. For each cornea, the scores from each area were added, leading to a maximum score of 15 (see section **14.1** page **14**). If at least two area were not evaluable, the score was not calculated then «nd» (not determined) was noted.

7.2.5. In life phase termination

Animals were euthanized on Day 21 by systemic injection of overdosed pentobarbital. This method is one of the recommended methods for euthanasia by the European authorities [6]. At the end of the study, each pump was withdrawn and their scopolamine levels were visually compared.

8. DATA PROCESSING

Results were expressed in the form of data tables using Microsoft Excel[®] software.

9. STATISTICAL ANALYSIS

The statistical analyses were performed using the software GraphPad Prism 6.0. A twoway ANOVA analysis was performed on the individual scores at both time points. The induced effect was assessed using the Sidak test for two comparisons: naïve group versus placebo-treated and induced group.

The drug effect was assessed using the Dunnett's test for multiple comparisons between treated-groups and placebo-treated groups. The comparison was performed only for the 7-day time-point, since the number of animals in the placebo-treated group was too small for the other time-points.

The p value had to be lower than 0.05 for the difference to be significant.

10. RESULTS

10.1. Study plan amendments and deviations

No study plan amendment was required within the study period and two study plan deviation were reported:

- the first instillation on September 19th was missed.

- the lacrimation production on D21 was not performed because of Phenol red thread supplying.

These study deviations were not considered to have an impact on the integrity of the results.

10.2. General behavior and mortality

General behavior and appearance were normal for all animals. Chromodacryoorrhea (red tears) was observed in some animals during the first week after the surgery. This phenomenon is usually observed during acute stress and involves muscarinic mechanisms.

Three rats were humanely euthanized for ethical reason (skin necrosis on the scare):

- rat #4 (placebo group) on D15;
- rat #5 (placebo group) on D11;
- rats #27 (cyclosporine A -treated group) on D15.

10.3. Animal body weight

The animal body weights are reported in Table 17 to Table 20 page 24 to 25.

Body weight gain Day of sacrifice Baseline Day 7 Day 14 (%, Day 21 vs (Day 21) Treatment Baseline) Mean SD Mean SD Mean SD Mean SD Mean SD Naïve 184 6 208 8 212 6 207 4 12 3 Placebo 183 9 197 204 201 9 7 5 9 4 ML7 184 8 189 7 199 7 196 8 6 4 Cyclosporin 7 183 181 4 189 10 200 6 10 4 еA

Table 7: Animal body weight (in g)

SD= Standard Deviation

Body weights were all within a normal range at baseline: mean group values were in a range of 183 to 184 g.

On Day 21, all surgery animals had a lesser body weight gain in comparison with the naïve group. This might be related to the scopolamine treatment. The ML7 treated group had a lesser body weight gain in comparison with the placebo or Cysclosporin A -treated group.

10.4. Aqueous tear production

The level of tear production for each group was measured with the phenol-red thread test.

Results are summarized in **Table 8** page **15**. Individual data are reported in **Table 9** to **Table 12** page **16** to **19**.

Figure 1: Tear production measurement

Seven days after induction, the Placebo treated rats showed a reduction in tear production compared with that of the naïve rats. This reduction in tear production continued over the 2-weeks period. Oral treatment with Cyclosporine A improved tear production compared with the vehicle group on Day 14. On Day 14, the mean PRT in Cyclosporine A –treated group was greater than the placebo –treated group (15.1 ± 7.5 vs. 11.2 ± 5.9) and similar to the Naïve group (15.1 ± 7.5 vs. 16.0 ± 7.3). Topical administration of ML7 was similar to the placebo administration.

10.5. Corneal fluorescein staining

The corneal fluorescein staining was measured using the National Eye Institute grading scheme.

Results are summarized in **Table 8** page **15**. Individual data are reported in **Table 13** to **Table 16** page **20** to **23**. Statistical analyses are reported in **Table 21** to **Table 22** page **26** to **27**.

Figure 2: Corneal fluorescein staining

At baseline, rats demonstrated only minimal corneal punctate staining. Scopolamine significantly increased the fluorescein staining. The score was significantly higher in the Placebo-treated dry eye animal group than in the naïve control animals on Day 7 (9.4 \pm 1.1 versus 4.0 \pm 1.0, p < 0.001), on Day 14 (8.6 \pm 2.2 versus, 4.4 \pm 1.0,

p < 0.001) and Day 21 (6.0 ± 2.3 versus 2.4 ± 1.8, p < 0.001).

Oral Cyclosporine A demonstrated a reduction in corneal staining scores after 21 days of treatment. The difference was statistically significant when compared with the Placebo treatment group on Day 7 (p<0.0001).

ML7 applied topically produced a statistically significant difference in corneal staining score on Day 7 when compared with the placebo-treated group (p<0.0001). On Days 21, the corneal staining was lower than the Placebo-treated group (5.2 ± 2.2 vs. 6.0 ± 2.3).

11. CONCLUSIONS

In the present study, and under our experimental conditions, the effects of ML7 topically applied TID, were evaluated in a rat model of scopolamine-induced dry eye. Under these conditions it can be stated that:

- ML7 did not improve the reduction of tear production induced by the scopolamine treatment.
- ML7 reduced the staining score after 7 days of treatment. After 21 days of treatment, the corneal staining was lower than in the vehicle group, however no statistical analysis could be performed at this time-point due to the number of animals left in the vehicle group (2 euthanized animals for ethical reason).

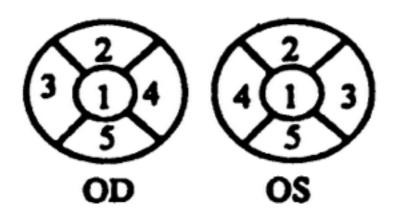
As expected, oral administration of Cyclosporine A improved tear production and reversed the corneal staining by 3 weeks of treatment and validated the assay.

12. ARCHIVING OF DATA

All source documents, raw data, study plan and report (all paper data) will be available for 5 years at IRIS PHARMA following the Study Director's approval of study report, upon which they will be either discarded or sent back to the Sponsor or kept for another 5 years at the Sponsor's request (at an additional cost).

13. REFERENCES

- 1. LEMP (1995). "Report of the National Eye Institute/Industry workshop on Clinical Trials in Dry Eyes." **CLAO J**. 21(4): 221-232.
- 2. SULLIVAN DA, Y. H., LIU M, STEAGALL RJ, SCHIRRA F, SUZUKI T, KRENZER KL, CERMAK JM, SULLIVAN RM, RICHARDS SM, SCHAUMBERG DA, DANA MR, SULLIVAN BD. (2002). "Sex steroids, the meibomian gland and evaporative dry eye." **Adv Exp Med Biol**. 506: 143-151.
- 3. BAUDOUIN (2001). "The pathology of dry eye." **Surv Ophthalmol** 45(Suppl): S211-S220.
- CERMAK JM, K. K., SULLIVAN RM, DANA MR, SULLIVAN DA. (2003). "Is complete androgen insensitivity syndrome associated with alterations in the meibomian gland and ocular surface." Cornea 22(6): 516-521.
- 5. BACMAN S, B. A., STERIN-BORDA L, BORDA E. (2001). "Muscarinic acetylcholine receptor antibodies as a new marker of dry eye Sjögren syndrome." **Invest Ophthalmol Vis Sci**. 42(2): 321-327.
- 6. French Decree n° 2013-118, dated February 01, 2013 publishing the European directive 2010/63/UE. J. Offic. Rep. Fr. 2013; Text 24 out of 130.
- 7. ASSOCIATION FOR RESEARCH IN VISION AND OPHTHALMOLOGY (ARVO). Statement for the Use of Animals in Ophthalmic and Vision Research.
- 8. VIAU S, MAIRE MA, PASQUIS B, GRÉGOIRE S, FOURGEUX C, ACAR N, BRETILLON L, CREUZOT-GARCHER CP, JOFFRE C. Time course of ocular surface and lacrimal gland changes in a new


- VIAU S, PASQUIS B, MAIRE MA, FOURGEUX C, GRÉGOIRE S, ACAR N, BRETILLON L, CREUZOT-GARCHER CP, JOFFRE C. No consequences of dietary n-3 polyunsaturated fatty acid deficiency on the severity of scopolamine-induced dry eye. Graefes Arch Clin Exp Ophthalmol. 2011 APR; 249(4):547-57.
- 10. TURNER PV, ALBASSAM MA. Susceptibility of rats to corneal lesions after injectable Anesthesia. **Comparative Medicine**. 2005; 55(2); 175-182.

14. APPENDICES

14.1. Corneal staining

The scale is based on the NEI grading system. The cornea is divided into five areas (see below). The amount of staining in each area is graded from 0 to 3 according to the punctuate fluorescein staining. The total maximum score is 15.

- 0:no staining1:mild punctuate staining2:moderate punctuate staining
- 3: severe punctuate staining

14.2. Table 8: Summarized data

Table 8: Evaluation of dry eye symptoms in albino rats

		Lacrimat	ion (mm)	Corneal sta	ining (0-15)
Treatment group	Time-point	Mean	SD	Mean	SD
	Baseline	16.15	7.08	2.15	1.18
	D7	10.45	4.26	9.35	1.14
3 instillations of Placebo/day	D14	11.22	5.93	8.61	2.17
	D21	-	-	6.00	2.31
	Baseline	16.85	5.98	2.20	1.06
2 instillations of MI 7/day	D7	7.65	2.28	8.00	1.49
3 instillations of ML7/day	D14	11.00	7.23	8.55	1.70
	D21	-	-	5.20	2.19
	Baseline	16.80	5.31	2.25	1.12
	D7	13.65	5.02	4.45	1.00
Cyslosporin A per os 1x/day	D14	15.11	7.49	4.11	1.49
	D21	-	-	2.44	1.54
	Baseline	15.80	2.82	2.00	0.82
News	D7	20.50	4.55	4.00	1.05
Naïve	D14	16.00	7.29	4.40	0.97
	D21	-	-	2.40	1.78

14.3. Tables 9-16: Individual data

14.3.1. Tables 9-12: Tear production evaluation

Table 9: Tear production evaluation with three instillations/day (Placebo)

Rat n°	Time-		PRT Test (mm)						
Rath	point	Right eye	Mean	SD	Left eye	Mean	SD	n	SD
1		25			15				
2		6	-		11	-			
3		17			6				
4		22			18				
5	Baseline	7	17.7	7.1	8	14.6	7.1	16.2	7.1
6	Baseline	15	17.7	7.1	12	14.6	7.1		7.1
7		28	-		32				
8		20	-		16	-			
9		20			15				
10		17			13				
1		7			12				
2	_	19	-		15	-			
3		3	-	5					
4		5			15	- 11.8	3.8	10.5	4.3
5	D7	10	9.1	4.5	10				
6		8	9.1	4.5	14			10.5	4.3
7		11			15				
8		11			15				
9		6			11				
10		11			6				
1		12			16				
2		16			16				
3		25			8				
4		12			13				
5	D14	dead	44.0	6.0	dead	40.0	E 0	44.0	50
6	D14	9	11.9	6.2	9	10.6	5.9	11.2	5.9

Confidential

20

7	12	20	
8	5	5	
9	12	3	
10	4	5	

	Time-		1	PRT Test	(mm)				
Rat n°	point	Right eye	Mean	SD	Left eye	Mean	SD	Mean	SD
11		20			26				
12		18			23				
13		19			25				
14		20			7				
15	Baseline	14	16.6	4.6	15	47.4			6.0
16	Daseime	25	10.0	4.0	26	17.1	7.4	16.9	0.0
17		12			11				
18		10			9				
19		13			17				
20		15			12				
11		4			9				
12		7			9	7.7	2.4		
13		11			7				
14		9			9				
15	D7	9	7.6	2.3	7			7.7	2.3
16	D1	9	7.0	2.5	9				2.5
17		10			5				
18		5			4				
19		6			6				
20		6			12				
11		6			9				
12		11			12				
13		11			8				
14		26			13				
15	D14	5	11.7	7.5	5	10.3	7.2	11.0	7.2
16	014	25	11.7	7.5	28	10.3	1.2	11.0	1.2
17		7			12				
18		8			2				

Table 10: Tear production evaluation with three instillations/day(ML7)

19	8	4		
20	10	10		

	Time-		PRT Test (mm)							
Rat n°	point	Right eye	Mean	SD	Left eye	Mean	SD	Mean	SD	
21		17			20					
22		11	-		17					
23		20	-		25					
24		15			23					
25	Baseline	8	14.8	5.2	15	18.8	4.8	16.8	5.3	
26	Baseline	10	14.0	5.2	18	10.0	4.0	10.0	5.3	
27		13			10					
28		23			25					
29		10			20					
30		21		15						
21		16			13					
22		13			13	13.8			5.0	
23		16			26		5.7			
24		18			16					
25	D7	14	13.5	4.5	15			13.7		
26		14	13.5	4.5	19			13.7	5.0	
27		18			9					
28		5			6					
29		15			12					
30		6			9					
21		16			18					
22		28			8					
23		28			20					
24		15			9					
25	D14	5	17.8	7.4	7	12.4	6.9	15.1	7.5	
26	014	21	17.0	1.4	11	12.4	0.9	13.1	7.0	
27		dead			dead					
28		12			10					
29		20			25					

Table 11: Tear production evaluation with cyclosporin (per os) 1x/day

30	15		4			

Det #	Time-			PRT Test	(mm)			Maan	SD
Rat n°	point	Right eye	Mean	SD	Left eye	Mean	SD	Mean	SD
31		13			12				
32		20	-		18			15.8	
33	Baseline	16	15.4	2.9	15	16.2	3.0		2.8
34		13			20				
35		15	-	16					
31		20			21				
32		28			15				
33	D7	25	23.8	3.0	18	17.2	3.2	20.5	4.6
34		24	-		19				
35		22			13				
31		5			5				
32		18			18				
33	D14	24	17.2	7.9	13	14.8	7.4	16.0	7.3
34		15			25				
35		24			13				

Table 12: Tear production evaluation with no induction (Naïve)

14.3.2. Tables 13-16: Corneal staining

Table 13: Corneal staining evaluation with three instillations/day (Placebo)

	Time-		Cor	neal stair	ning (0-15)				
Rat n°	point	Right eye	Mean	SD	Left eye	Mean	SD	Mean	SD
1		1			2				
2		2			1				
3		1			1	-			
4		2			1				
5	Baseline	2	2.7	1.3	2	1.6	0.7	2.2	1.2
6	Baseline	3	2.1	1.3	2	1.0	0.7	2.2	1.2
7		4			1				
8		3			3				
9		4			2				
10		5			1				
1		11			10				
2		10			9	9.0			
3		8			7				
4		10			9				
5	D7	10	9.7	1.1	11		1.2	9.4	1.1
6		11	5.7	1.1	10			5.4	1.1
7		9			9				
8		10			8				
9		8			9				
10		10			8				
1		13			9				
2		8			9				
3		9			11				
4		9			8				
5	D14	dead	8.7	2.3	dead	8.6	2.2	8.6	2.2
6	014	8	0.7	2.3	8	0.0	£.£	0.0	2.2
7		7			6				
8		11			12				

Confidential

27

9		5			9				
10	-	8			5				
1		8			6				
2		7			3				
3		4			6				
4	-	dead	-		dead				
5	D21	dead	6.4	1.8	dead	5.6	2.8	6.0	2.3
6	DZI	8	0.4	1.0	12	5.0	2.0	0.0	2.5
7	*	4			4				
8		7			4				
9		8			6				
10		5			4				

Rat n°	Time-		Cor	neal stair	ning (0-15)			Mean	SD
	point	Right eye	Mean	SD	Left eye	Mean	SD	INIGUL	30
11		1			1				
12		2			0				
13		2	-		2				
14		3	_		1				
15	Deseline	3			2	4.0	1.0		1.1
16	Baseline	2	2.5	1.1	3	1.9		2.2	
17		1	_		3				
18		4	-		2				
19		3			2				
20		4			3				
11		7			8				
12		10			9				1.5
13		8	9.4	1.7	8	- 7.9	1.4		
14		8			9			8.0	
15		11			9				
16	D7	7	8.1	1./	7	7.9	7.4		1.5
17		10			10				
18		7			6				
19		6			6				
20		7			7				
11		8			8				
12		10			9				
13		11			6				
14		11			10				
15		10		4.6	9				4 -
16	D14	9	9.3	1.3	9	7.8	1.8	8.6	1.7
17		7			8				
18		9	1		7				
19	1	8			4				

Table 14: Corneal staining evaluation with three instillations (ML7)

20		10			8				
11		7			4				
12	*	5			6				
13		8			2				
14		4			4				
15	Dat	8		10	6	4.3	2.2		
16	D21	8	6.1	1.9	5	4.3	2.2	5.2	2.2
17		7			8				
18	*	4			5				
19		3			1				
20		7			2				

5

Rat n°	Time-		Cor	neal stain	ing (0-15)			Mea	SD
	point	Right eye	Mean	SD	Left eye	Mean	SD	n	30
21		3			0				
22		1			1				
23	*	2			1				
24		3			1				
25	Baseline	1	2.6	1.1	3	1.9	1.1	2.3	1.1
26	Daseiine	3	2.0	1.1	2	1.5	1.1	2.3	1.1
27		4			3				
28		3			2				
29		2			3				
30		4			3				
21		5			5				
22	-	4	4.5	1.0	4				
23		3			3				
24		6			6		1.1	4.5	
25	D7	5			6	4.4			1.0
26		5	4.5		4				1.0
27		3			4				
28		4			3				
29		5			4				
30		5			5				
21		4			4				
22		7			3				
23		5			5				
24		6			5				
25	D14	4	4.7	1.2	1	3.6	1.6	4.1	1.5
26		4	7./	1.2	2	5.0	1.0		1.5
27		dead			dead				
28		3			2				

5

Table 15: Corneal staining evaluation with cyclosporin (per os) 1x/day

30		4			5				
21		4			1				
22	*	1			0				
23	•	5			2	**			
24	*	2			2				
25	D 01	4			2	2.3	47		4.5
26	D21	2	2.6	1.4	5	2.3	1.7	2.4	1.5
27	*	dead			dead				
28	*	1			3				
29	*	2			1				
30	1	2			5				

	Time-		Cor	neal stain	ing (0-15)			Меа	05
Rat n°	point	Right eye	Mean	SD	Left eye	Mean	SD	n	SD
31		3			2				
32		3			2				
33	Baseline	2	2.6	0.5	1	1.4	0.5	2.0	0.8
34		3			1	**			
35		2			1				
31		5			4				
32		5			3				
33	D7	4	4.4	4.4 0.9	4	3.6	1.1	4.0	1.1
34		3			5				
35		5			2				
31		5			5	_			
32		5			4				
33	D14	4	4.8	0.4	2	4.0	1.2	4.4	1.0
34		5			5				
35		5			4				
31		1			1				
32		2	1		4				
33	D21	1	2.8	2.2	1	2.0	1.4	2.4	1.8
34		6			3				
35		4	1		1				

Table 16: Corneal staining evaluation with no induction (Naïve)

14.4. Tables 17-19: Individual data animal body weight

Det #		1			E	Body Weig	hts (g)					
Rat n°	D0	Mean	SD	D7	Mean	SD	D14	Mean	SD	D21	D21 Mean	
31	192			216			218			209		
32	182	_		212			218			211		
33	184	184.4	6.1	208	208.0	8.4	210	211.6	6.2	207	206.6	4.2
34	176	-		194			204	-		200		
35	188	1		210			208	-		206	1	

Table 17: Body weight without treatment

Table 18: Body weight with three instillations (Placebo)

Det n ⁹					E	ody Weig	hts (g)					
Rat n°	D0	Mean	SD	D7	Mean	SD	D14	Mean	SD	D21	Mean	SD
1	178			192			202			187		
2	188	_		194			204			201		
3	184			194			206			210		
4	192	-		202	196.8	6.7	202	204.2 5	5.1	na	200.5	9.2
5	170	402.0		184			na			na		
6	178	183.2	8.8	194			206			203		
7	198	-		206			208			202		
8	186	-		198	-		200			208		
9	172			198			196			186	1	
10	186			206			214			207	1	

	Body Weights (g)											
Rat n°	Baselin e	Mean	SD	D7	Mean	SD	D14	Mean	SD	D21	Mean	SD
11	176			184			192			195		

Confidential

34

12	182			180]		194			188		
13	193	-		194			196	_		192		
14	176	-		182			192			190		
15	180			188	400 4		200	400.0	- 0	192	405 7	
16	194	184.1	8.1	200	189.4	6.9	212	199.2	7.2	210	195.7	8.0
17	182			184			196			190		
18	174			190			196			197		
19	188	-		194			204			193		
20	196			198			210			210	1	

Rat n°					В	ody Weigl	hts (g)					
Rain	D0	Mean	SD	D7	Mean	SD	D14	Mean	SD	D21	Mean	SE
21	172			180			172			191		5.5
22	182			186			192			193		
23	190			178			174			199	-	
24	176			178		4.2	196			204		
25	186		7.0	174			190	188.9	9.6	204	200.0	
26	196	183.4	7.2	186	180.8		196			201		
27	188			176			na			na		
28	180			182			190			197		
29	186			184			190			203	1	
30	178			184			200			208	1	

Table 20: Body weight with with cyclosporin (per os)

14.5. Tables 21-22: Statistical analyses

Table 21: Corneal staining Sidak's test (Naïve vs. Placebo groups)

Table Analyzed		, CS			
Two-way ANOVA Alpha		Ordina 0.05	ary		_
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value
Interaction	110.2	3	36.72	F (3, 106) = 14.98	P < 0.0001
times	392.6	3	130.9	F (3, 106) = 53.38	P < 0.0001
treatment	302.0	1	302.0	F (1, 106) = 123.2	P < 0.0001
Residual	259.8	106	2.451		

Number of missing values 27

Sidak's multiple comparisons test

Nalve - Placebo	Mean Diff.	95% CI of diff.	Significant?	Summary	Adjusted P Value
Baseline	0.1500	-1.386 to 1.686	No	ns	0.9986
Day 7	5.700	4.164 to 7.236	Yes	****	< 0.0001
Day 14	4.211	2.646 to 5.776	Yes	****	< 0.0001
Day 21	3.600	2.001 to 5.199	Yes	****	< 0.0001

Table 22: Corneal staining Dunnett's test (ML7, Placebo and Cyclosporine A -treated groups)

Table Analyzed

One way ANOVA, CS, Day 7

ANOVA summary	
F	92.96
P value	< 0.0001
P value summary	****
Are differences among means statistically significant? (P < 0.05)	Yes
R square	0.8086

ANOVA table	SS	DF	MS	F (DFn, DFd)	P value
Treatment (between columns)	385.2	3	128.4	F (3, 66) = 92.96	P < 0.0001
Residual (within columns)	91.15	66	1.381		
Total	476.3	69			

Dunnett's multiple comparisons test

	Mean Diff.	95% CI of diff.	Significant?	Summary	Adjusted P Value
Placebo vs. ML7	1.700	0.8064 to 2.594	Yes	****	< 0.0001
Placebo vs. CsA (per os)	5.250	4.356 to 6.144	Yes	****	< 0.0001
Placebo vs. Naïve	5.700	4.606 to 6.794	Yes	****	< 0.0001

14.6. Certificate of analysis of scopolamine

14.7. Certificate of analysis of ML7

CERTIFICA	TE OF CONFORMITY F	OR FORMULAT	IONS	ML7 / N	EUROPT	IS
Number: CC024 Approved:	Mare	Do	te :_	hay		rsion: 0
				0		
Batch number :		Description:				
	50 F25612	Packaging si	ze : _	Put is i	ut out	erglaa:

рН :	69
Osmolality : _	293 NCm/kg

Assay :	(CNIFORM

Name and signature : jamo 20 Dotishully Date : August 01th, 2013

CC024.01.dec

Confidential

(*octa technol				
CERTIFICA	TE OF CONFORMITY	FOR FORMULATIONS	5 ML7 / N	EUROPTIS
Number: CC024 Approved:	Marie	Date :	Nay	Version: 01 16 ⁷⁴ 2583
	REATMENT A : July 3 TH , 2013 JOST 255612	Description: Packaging size :		
Os	: <u>69</u> molality : <u>293</u> say : <u>Ссы</u> Ра			
Name and signature	: Juice do d	<u>strestancya</u> Date	: <u>Aug</u> e	ur cstr, 2013-
CC024 01 dec		Confidential		1/

14.9. Coding instructions

Approved by: Date: Aug 8th, 233 Signature: NO.2

CODING AND LABELLING INSTRUCTIONS

Study : N50F25612

CRO : Iris Pharma

Fill volume: 2 mL

Coding list

Coding	Batch #	ID	Number of vials
A	E753-1	Placebo	21+3
В	E753-2	0.1%w/w ML7 solution	21 + 4

Labels for formulation A

NS0E25612 study
Treatment A
Per: 31/09/13
Storage: 4°C
Octalia Technologies

Labels for formulation B

NS0F25612 study
Treatment B
Per: 31/09/13
Storage: 4°C
Octalla Technologies

Labels for sample box

octalia
H90F25612 study Treatment A (21 + 3 viais at 2 mi) Per: 31/09/13
HS0F25612 study Treatment 8 (21 + 4 viais at 2 ml) Par: 31/05/13
Storage: 4°C