Exercice 18

a.
$$\sin 2x = \sin -\frac{\pi}{6} \Leftrightarrow \Leftrightarrow \begin{cases} 2x = -\frac{\pi}{6} + 2k\pi, \quad k \in \mathbb{Z} \\ 2x = \pi + \frac{\pi}{6} + 2k'\pi, \quad k' \in \mathbb{Z} \end{cases} \Leftrightarrow \begin{cases} x = -\frac{\pi}{12} + k\pi, \quad k \in \mathbb{Z} \\ x = \frac{7\pi}{12} + k'\pi, \quad k' \in \mathbb{Z} \end{cases}$$

Conclusion : $\sin 2x = -\frac{1}{2}$ admet $-\frac{5\pi}{12}; -\frac{\pi}{12}; \frac{7\pi}{12}$ et $\frac{11\pi}{12}$ pour solutions sur l'intervalle $] -\pi; \pi].$

b. $(\cos x)^2 = 2\sin x + 1$ et $(\sin x)^2 + (\cos x)^2 = 1$ donc

$$(\cos x)^2 = 2\sin x + 1 \iff 1 - (\sin x)^2 = 2\sin x + 1 \iff \sin x (\sin x - 2) = 0 \iff \sin x = 0 \quad ou \quad \sin x - 2 = 0$$

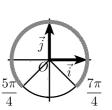
Or pour tout réel x, $\sin x \le 1$ donc $\sin x - 2 = 0$ n'admet aucune solution et $\sin x = 0$ pour x = 0 ou $x = \pi$ sur $|-\pi;\pi|$.

Conclusion : $(\cos x)^2 = 2\sin x + 1$ pour x = 0 ou $x = \pi$ sur $] - \pi; \pi]$

Exercice 19

- a. Sur $[0; 2\pi]$, $\cos x \cdot \sin x \le 0$ si :
- $\cos x \le 0$ et $\sin x \ge 0$ c'est à dire si $x \in \left[\frac{\pi}{2}; \pi\right];$ • $\cos x \ge 0$ et $\sin x \le 0$ c'est à dire si $x \in \left[\frac{3\pi}{2}; 2\pi\right];$ Conclusion : $\cos x \cdot \sin x \le 0$ pour $x \in \left[\frac{\pi}{2}; \pi\right] \cup \left[\frac{3\pi}{2}; 2\pi\right].$

b.
$$\sin x \ge -\frac{\sqrt{2}}{2}$$
 pour $x \in \left[0, \frac{5\pi}{4}\right] \cup \left[\frac{7\pi}{4}; 2\pi\right[$.



Exercice 20

Or,

D'après la relation de Chasles, on a :

$$(\overrightarrow{AB}, \overrightarrow{EF}) = (\overrightarrow{AB}, \overrightarrow{BC}) + (\overrightarrow{BC}, \overrightarrow{CD}) + (\overrightarrow{CD}, \overrightarrow{DE}) + (\overrightarrow{DE}, \overrightarrow{EF})$$
(2 π)

$$= (BA, BC) + (CB, CD) + (DC, DE) + (ED, EF) + 4\pi \quad (2\pi)$$
$$= \frac{5\pi}{c} - \frac{7\pi}{c} + (\overrightarrow{DC}, \overrightarrow{DB}) + (\overrightarrow{DB}, \overrightarrow{DE}) + \frac{5\pi}{c} \quad (2\pi)$$

$$= \frac{5\pi}{6} - \frac{7\pi}{9} + (\overrightarrow{DC}, \overrightarrow{DB}) - \frac{\pi}{2} + \frac{5\pi}{9}$$
(2 π)

$$2(\overrightarrow{DC},\overrightarrow{DB}) + (\overrightarrow{CB},\overrightarrow{CD}) = -\pi \operatorname{soit} (\overrightarrow{DC},\overrightarrow{DB}) = -\frac{\pi}{9} \operatorname{donc}$$

$$(\overrightarrow{AB},\overrightarrow{EF}) = \frac{5\pi}{6} - \frac{7\pi}{9} - \frac{\pi}{9} - \frac{\pi}{2} + \frac{5\pi}{9} \quad (2\pi)$$

$$= \frac{5\pi}{6} - \frac{3\pi}{9} - \frac{\pi}{2} \qquad (2\pi)$$

$$= \frac{(5-2-3)\pi}{6} \qquad (2\pi)$$

$$= 0 \qquad (2\pi)$$

On en déduit que les vecteurs \overrightarrow{AB} et \overrightarrow{EF} sont colinéaires donc les droites (AB) et (EF) sont parallèles.

