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Abstract. We prove Reilly-type upper bounds for different types of eigen-
value problems on submanifolds of Euclidean spaces with density. This in-

cludes the eigenvalues of Panetiz-like operators as well as three types of gen-

eralized Steklov problems. In the case without density, the equality cases are
discussed and we prove some stability results for hypersurfaces which derive

from a general pinching result about the moment of inertia.

1. Introduction

Let (Mn, g) be a n-dimensional (n > 2) closed, connected, oriented manifold, iso-
metrically immersed by X into the (n+ 1)-dimensional Euclidean space Rn+1. The
spectrum of the Laplacian of (M, g) is an increasing sequence of real eigenvalues

0 = λ0(M) < λ1(M) 6 λ2(M) 6 · · · 6 λk(M) 6 · · · −→ +∞,

counted without multiplicity. The eigenvalue 0 (corresponding to constant func-
tions) is simple and λ1(M) is the first positive eigenvalue. In [29], Reilly proved
the following well-known upper bound for λ1(M)

(1) λ1(M) 6
n

V (M)

∫
M

H2dvg,

where H is the mean curvature of the immersion. In the same paper, he also proved
an analogous inequality involving the higher order mean curvatures. Namely, for
r ∈ {1, · · · , n}

(2) λ1(M)

(∫
M

Hr−1dvg

)2

6 V (M)

∫
M

H2
r dvg,

where Hk is the k-th mean curvature, defined as the k-th symmetric polynomial of
the principal curvatures. Moreover, Reilly studied the equality cases and proved
that equality in (1) as in (2) is attained if and only if X(M) is a geodesic sphere.
These inequalities have been generalized for other ambient spaces [18, 20], other
operators, in particular of Jacobi type [1, 4, 7], in the anisoptropic setting [32] or
for weighted ambient spaces [8, 17, 33]. In particular, in [33], we prove the following
general inequality

(3) λ1(LT,f )

(∫
M

tr (S)µf

)2

6

(∫
M

tr (T )µf

)∫
M

(
‖Hs‖2 + ‖S∇f‖2

)
µf ,

where µf = e−fdvg is the weighted measure of (M, g) endowed with the density
e−f , T, S are two symmetric, free-divergence (1, 1)-tensors with T positive definite.
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Moreover, LT,f is the second order differential operator defined for any smooth
function u on M by

LT,f = −div(T∇u) + 〈∇f, T∇u〉.

In this paper, we are interested in a closely related problems, First, we prove
eigenvalue estimates for the Steklov problem for submanifolds with boundary. We
obtain general Reilly-type upper bounds (see Theorem 3.1) that generalize the
earlier estimates by Ilias and Makhoul [25]. These upper bounds are given for a
larger class of a general Steklov problem, also involving a weighted measure.

We also consider two other Steklov-type problems, namely the Wentzell-Steklov
problem as well as a biharmonic Steklov problem, both in the non-weighted
context. Here again, we upper bounds for the first eigenvalues of these problems
are given and the equality cases are characterized (see Theorem 3.3 and 3.4).

Finally, we also prove an upper bound for the first eigenvalue of weighted
Paneitz-like operators. These Reilly-type estimates extend the previous estimates
by Chen and Li [13]. The equality case is also discussed (see Theorems 4.1 and 4.4).

For all the above eigenvalue problems, we derive estimates for submanifolds
of spheres and projectives spaces by the use of the standard embeddings, as well as
isoperimetric estimates for the case of embedded hypersurfaces. These estimates
will be given in Section 5.

The last part of the present paper is devoted to stability results. As men-
tionned, the equality cases are discussed and we can obtain for the case of
hypersurfaces some stability results with proximity to geodesic hyperspheres in
case of almost equality. Precisely, after proving an optimal estimate for the
moment of inertia for hypersurfaces, with geodesic hyperspheres as limitting
hypersurfaces, we study the associated pinching problem (Theorem 6.3). It turns
out that the stability of the above eigenvalues estimates is closely linked to the
pinchng of the moment of inertia (Proposition 6.8).

2. Preliminaries : Hypersurfaces of weighted Euclidean space

A weighted manifold (M̄, ḡ, dµ̄f ) is a Riemannian manifold (M̄, ḡ) endowed with
a weighted volume form dµ̄f = e−fdvḡ, where f is a real-valued smooth function
on M̄ and dvḡ is the Riemannian volume form associated with the metric ḡ. In
the present paper, we will focus on the case where (M̄, ḡ) is the Euclidean space
(RN , can) with its canonical flat metric and we will consider isometric immersions
of Riemannian manifolds (Mn, g) into (RN , can). For such an immersion, we can
define on M a divergence associated with the volume form dµf = e−fdvg by

divfY = divY − 〈∇f, Y 〉

or equivalently

d(ιY dµf ) = divf (Y ) dµf ,

where ∇ is the gradient on M , that is the projection on TM of the gradient ∇̄ on
M̄ . We call it the f -divergence. We recall briefly by some basic facts about the
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f -divergence. We first have the weighted version of the divergence theorem:

(4)

∫
M

divfY dµf = 0,

for any vector field Y on M . From this, we deduce easily the integration by parts
formula

(5)

∫
M

u divfY dµf = −
∫
M

〈∇u, Y 〉 dµf ,

for any smooth function u and any vector field Y on M . From this we can prove
the following weighted version of the so called Hsiung-Minkowski formula. For any
divergence-free symmetric (1, 1)-tensor, we have

(6)

∫
M

(
〈X,HT − T∇f〉+ tr (T )

)
dµf = 0,

where HT =
∑n
i,j=1〈Tei, ej〉B(ei, ej), with B the second fundamental form and

{e1, · · · , en} a local orthonormal frame of TM (see [33] for the proof). Note that
in the case without density, the classical Hsiung-Minkowski formula (see [22] for
T = Id ) is given by

(7)

∫
M

(
〈X,HT 〉+ tr (T )

)
dvg = 0.

Finally, we recall that in this weighted context, Lichnerowicz [26] and Bakry-Émery
[6] introduced the natural generalizations of the Ricci curvature

Ricf = Ric + Hess f,

which known as Bakry-Émery tensor or ∞-Bakry-Émery tensor as it appears as a
special case of N -Bakry-Émery tensors defined by

RicNf = Ricf −
1

N
df ⊗ df,

for N > 0. This curvature tensor is the natural generalization of the Ricci curav-
ture whic allows extensions of many classical comparison results in Ricci curvature
bounded form below in the case of smooth metric measure spaces. One can refere
for instance to [36] for a survey about these questions.

We finish this section of preliminaries by recalling a useful elementary lemma. Let
(Mn, g) be a connected and oriented closed Riemannian manifold isometrically
immersed by X into RN . We denote by {∂1, · · · , ∂N} the canonical frame of RN
and for k ∈ {1, · · · , N}, Xk = 〈X, ∂k〉 the coordinate functions. Then, we have the
following elementary lemma.

Lemma 2.1. If A is a field of endomorphisms on M , we have

N∑
k=1

〈A(∇Xk),∇Xk〉 = tr (A).

The proof can be found in [33].
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3. Upper bounds for Steklov-type problems

3.1. Generalized Steklov problems. In [25], Ilias and Makhoul proved ana-
logues of inequalities (1) and (2) for the first eigenvalue of the Steklov problem for
submanifolds with boundary of the Euclidean space RN . Let a compact Riemann-
ian manifold (M, ḡ) with non-empty boundary ∂M . The induced metric on ∂M
will be denoted g. We consider the boundary problem

∆u = 0 on M

∂u

∂ν
= σu on ∂M,

where σ is a real number and u a C2 function over M . This problem was
introduces by Steklov [35] and has been widely studied (see [25] and reference
therein). It is a well-known fact that the set of all σ for which this problem admits
solutions is an increasing sequence of nonnegative real numbers. This sequence is
exactely the spectrum of the so-called Dirichlet-to-Neumann operator. In [25], Ilias
and Makhoul proved the following Reilly-type inequality for the first eigenvalue of
this Steklov spectrum

(8) σ1

(∫
∂M

Hrdvg

)2

6 nV(M)

∫
∂M

||Hr+1||2dvg,

which is also valid for any r if n = N − 1 and only for even r if N > n− 1. As for
the Reilly inequalities (1) and (2), equality in (8) is characterized.

In this section, we will consider some generalized Steklov problems. Let f
be a smooth function on M , we can define on M a Laplace operator associated
with the volume form µ̄f = e−fdvḡ by

∆̄fu = −divf (∇̄u) = ∆̄u+ 〈∇̄f, ∇̄u〉,

where ∇̄ is the gradient on M . We call it the f -Laplacian which is often called
Bakry-Émery Laplacian, Witten Laplacian or drifting Laplacian in the litterature.
Moreover, for a positive symmetric divergence-free (1, 1)-tensor T , we consider the
operator LT,f by

LT,fu = −divf (T ∇̄u),

for any C2 fonction u on M . Then, we can consider the following generalized
weighted Steklov problem

(9)


LT,fu = 0 on M,

∂u

∂νT
= σu on ∂M.

For T = Id , this problem has be considered recently by Batista and Santos [9] in
the instrinsic setting. Namely considering domains in a manifold of nonnegative
Bakry-Émery Ricci curvature, they obtain lower bound for the eigenvalue of this
weighted Steklov problem. Here, we will derive upper bounds for domains of a
manifold lying in a Euclidean space.
Precisely, we consider the generalized Stelkov problem (9) with the presence of a
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tensor T . From [5], we know that this problem also have a discrete nonnegative
spectrum and we denote by σ1,T,f its first eigenvalue.

In this first result, we obtain Reilly-type inequalities similar to those ob-
tained in [33] for λ1(LT,f ) and generalizing the results of [25] when the ambiant
space is endowed with a measure with density. Namely, we prove following

Theorem 3.1. Let (Mn, g) be a connected and oriented closed Riemannian man-
ifold isometrically immersed into the Euclidean space RN endowed with a density
e−f . Let T be a positive symmetric divergence-free (1, 1)-tensor over M and S a
symmetric divergence free (1, 1)-tensor over ∂M . Then, the first eigenvalue of the
generalized Steklov problem satisifes

σ1,T,f

(∫
∂M

tr (S)µf

)2

6

(∫
M

tr (T )µ̄f

)∫
∂M

(
||HS ||2 + ||S∇f ||2

)
µf .

Moreover,

• If f is constant, HS does not vanish identically and if equality occurs, then
tr (S) and ||HS || are non-zero constants, M is T -minmally immersed into

RN and ∂M lies into a geodesic hypersphere of RN of radius
|tr (S)|
||HS ||

.

• If f is not constant and if equality holds in the case S = Id then M is
a self-shrinker for the mean curvature flow and f|M = a − c

2r
2
p, where rp

is the Euclidean distance to the center of mass p of M . In particular, if
n = N − 1 and H > 0 or n = 2, N = 3 and M is embedded and has genus
0, then M a geodesic hypersphere.

Remark 3.2. Note that µ̄f and µf denote respectively the weighted measure on M
and ∂M .

Proof: Up to a translation, we can assume that for coordinates functions Xk satisfy∫
M
Xkdvg = 0. Hence, from the variational characterization of σ1,T,f , using the

coordinates Xk as test functions and taking the sum for k from 1 to N we have

σ1,T,f

N∑
k=1

∫
∂M

|Xk|2µf 6
N∑
k=1

∫
M

〈T∇Xk, Xk〉ūf ,

which gives, by Lemma 2.1

(10) σ1,T,f

∫
∂M

|X|2µf 6
∫
M

tr (T )µ̄f .

Now, we multiply this last inequality by

∫
∂M

(
||HS ||2 + ||S∇f ||2

)
µf and we use the

Hsiung-Minkowski formula (6) on ∂M with the tensor S to get

σ1,T,f

(∫
∂M

tr (S)µf

)2

6

(∫
M

tr (T )µ̄f

)∫
∂M

(
||HS ||2 + ||S∇f ||2

)
µf .

The inequality is proven. Let us consider the equality case. First, assume that
f = 0, HS does not vanish identically and equality occurs. Since equality occurs,
then, equality holds in the Cauchy-Schwarz inequality, that is, HS = λX on ∂M
for some non-zero constant λ. This implies that, on ∂M , the position vector X
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is normal. Clearly, we deduce that for any vector field Y tangent to ∂M , we
have Y (||X||2) = 2〈∇̄YX,X〉 = 〈Y,X〉 = 0 and so X has constant norm on ∂M .
Therefore the same holds for HS since HS = λX.
Moreover, since, always on ∂M , XT = 0, we deduce that

0 = tr (S) + 〈X,HS〉.

Indeed, we recall the following classical fact (see [33] for instance)

(11) div(SXT ) = tr (S) + 〈X,HS〉,

which after intrgartion gives the Hsiung-Minkowski formula. Hence, we get

tr (S) = −〈X,HS〉 = − 1

λ
||HS ||.

This implies that tr (S) is also a non-zero constant and ||X||∂M =
|tr (S)|
||HS ||

, that is,

∂M lies into a geodesic sphere of radius
|tr (S)|
||HS ||

.

Now, we prove the last consequence of the equality case. Equality implies that
the coordinate functions Xi are eigenfunctions of the generalized Steklov problem.
Hence, they satisfy LTX

i = 0. But, since, on M , LTX = −HT (see [20] or [33]
for instance), we get immediately that HT = 0, that is M lies T -minimally into RN .

Now, assume that f is not constant and S = Id . If equality occurs then all the
above inequalities are equalities. In particular, equality occurs in the Cauchy-
Schwarz inequality and we have H − ∇f = cX for some constant c. Identifying
tangential and normal parts, we get ∇f = −cX> and H = cX⊥.
The normal equation H = cX⊥ is exactly the definition of a self-similar solution
of the mean curvature flow. Since M is a compact submanifold of RN , c cannot
be zero. The case c > 0 is no more possible. Indeed, if c > 0, then M is a
self-expander, but it is well known that there exists no compact self-expander.
Hence, the only possibility is c < 0, that is M is a self-shrinker.

In addition, since X> = 1
2∇||X||

2, the tangential equation becomes

∇(f + c
2 ||X||

2) = 0. Since M is connected, there exists a constant a such

that f|M = a− c
2 ||X||

2.
In the particular cases N = n+ 1 and H > 0 or n = 2, N = 3 and M is embedded
and has genus 0, we know from [23] and [11] respectively that M has to be a
geodesic hypersphere. This finishes the proof of the equality case. This concludes
the proof. �

3.2. Steklov-Wentzell problem. Let (Mn, g) be a smooth submanifold of the
Euclidean space RN with non-empty boundary ∂M and b a positive constant. We
will denote by g the induced metric on ∂M and the Laplacian on M and ∂M will be
denoted respectively by ∆ and ∆. We consider the following Steklov-type problem
for the Laplacian ∆ with the so-called Wentzell boundary condition. Namely, we
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consider

(SW)


∆u = 0 on M,

−b∆u− ∂u

∂ν
= αu on ∂M.

Obviously, if b = 0, then, we recover the classical Steklov problem. The spectrum
of this problem is an increasing sequence (see [15])

0 = α0 < α1 6 α2 · · · 6 αk 6 · · · −→ +∞.

The eigenvalue 0 is simple and the corresponding eigeinfunctions are the constant
ones. Moreover (see [15, 37]), α1 has the following variational characterization

(12) α1 = inf


∫
M

‖∇u‖2dvg + b

∫
∂M

‖∇u‖2dvg∫
∂M

u2dvg

∣∣∣∣∣
∫
∂M

udvg = 0

 .

We prove the following upper bound for the first positive eigenvalue α1 of this
problem

Theorem 3.3. Let (Mn, g) be a connected and oriented compact Riemannian man-
ifold with non-empty boundary ∂M isometrically immersed into the Euclidean space
RN . Let S be a symmetric divergence free (1, 1)-tensor over ∂M . Then, the first
eigenvalue of the Steklov-Wentzell problem satisifes

α1

(∫
∂M

tr (S)dvg

)2

6
(
nV (M) + b(n− 1)V (∂M)

)(∫
∂M

‖HS‖2dvg
)
.

Moreover, if HS does not vanish identically, then if equality occurs then tr (S) and
‖HS‖ are non-zero constants, M is a minmal submanifold of RN and ∂M lies into

a geodesic hypersphere of RN of radius
|tr (S)|
‖HS‖

.

In particular, if n = N , then equality occurs if and only if M is a geodesic disk of

radius
|tr (S)|
‖HS‖

.

Proof: Here again, we can assume that for any k ∈ {1, · · · , N},
∫
M
Xkdvg = 0 and

so use the coordinates functions in (12) to get

α1

∫
∂M

‖X‖2dvg 6
N∑
i=1

(∫
M

‖∇Xi‖2dvg + b

∫
∂M

‖∇Xi‖2dvg
)

(13)

First, by Lemma 2.1 applied respectively on M and ∂M , we have
∑N
i=1 ‖∇Xi‖2 = n

and
∑N
i=1 ‖∇Xi‖2 = n− 1 and so we obtain from (13)

(14) α1

∫
∂M

|X|2dvg 6 nV (M) + (n− 1)V (∂M).
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Using (14), the Cauchy-Schwarz inequality and the Hsiung-Minkowski formula. We
have

α1

(∫
∂M

tr (S)dvg

)2

6 α1

(∫
∂M

〈X,HS〉dvg
)2

6 α1

(∫
∂M

‖X‖2dvg
)(∫

∂M

‖HS‖2dvg
)

6
(
nV (M) + (n− 1)V (∂M)

)(∫
∂M

‖HS‖2dvg
)
,

which is the desired inequality.
Now, if HS does not vanish identically and equality occurs, then as in the proof of
Theorem 3.1, we get that ‖HS‖ and tr (S) are non-zero constants and ∂M lies into a

geodesic sphere of radius
|tr (S)|
‖HS‖

. Moreover, since equality occurs, the coordinates

{Xi}i=1,··· ,N , used as test functions, satisfiy ∆Xi = 0 over M and so M is immersed
minimally into RN . �

3.3. Biharmonic Steklov problem. Now, we consider the following biharmonic
Steklov problem. Let (Mn, g) be a smooth submanifold of the Euclidean space RN
with non-empty boundary ∂M and τ a positive constant.

(BS)



∆
2
u− τ∆u = 0 on M,

∂2u

∂ν2
= 0 on ∂M,

τ
∂u

∂ν
− div∂M

(
P∂M ((∇2u)ν)

)
− ∂∆u

∂ν
= βu on ∂M.

This problem has a discret spectrum consisting in an increasing sequence (see [])

0 = β0 < β1 6 β2 · · · 6 βk 6 · · · −→ +∞.

The eigenvalue 0 is simple and the corresponding eigeinfunctions are the constant
function. It is proven in [12] that the boundary condition in this problem are the
natural one so that the weak formulation of this problem is:∫

M

(〈
∇2
u,∇2

φ
〉

+ τ
〈
∇u,∇φ

〉)
dvg = β

∫
∂M

uφdvg,

and where we have denoted by g the induced metric on ∂M , Hence, the first positive
eigenvalue β1 has the following variational characterization

(15) β1 = inf


∫
M

(
‖∇2

u‖2 + τ‖∇u‖2
)
dvg∫

∂M

u2dvg

∣∣∣∣∣
∫
∂M

udvg = 0

 .

Theorem 3.4. Let (Mn, g) be a connected and oriented compact Riemannian man-
ifold with non-empty boundary ∂M isometrically immersed into the Euclidean space
RN . Let S be a symmetric divergence free (1, 1)-tensor over ∂M . Then, the first
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eigenvalue of the biharmonic Steklov problem satisifes

β1

(∫
∂M

tr (S)dvg

)2

6

(∫
M

(‖B‖2 + nτ)dvg

)(∫
∂M

||HS ||2dvg
)
,

where B is the second fundamental form of M in RN .
Moreover, if HS does not vanish identically, then if equality occurs then tr (S) and
||HS || are non-zero constants, M is a τ -biharmonic submanifold of RN and ∂M

lies into a geodesic hypersphere of RN of radius
|tr (S)|
‖HS‖

.

In particular, if n = N , then

β1

(∫
∂M

tr (S)dvg

)2

6 nτV (M)

(∫
∂M

||HS ||2dvg
)

and equality occurs if and only if M is a geodesic disk of radius
|tr (S)|
‖HS‖

.

Proof: We use coordinates as test functions (after a tranlsation if needed) in the
variational characterization to get

β1

∫
∂M

‖X‖2dvg 6
N∑
i=1

∫
M

(
‖∇2

Xi‖2 + τ‖∇Xi‖2
)
dvg(16)

First, by Lemma 2.1, we have
∑N
i=1 τ‖∇Xi‖2 = nτ . Moreover, we have the follow-

ing elementary lemma

Lemma 3.5. We have

N∑
i=1

‖∇2
Xi‖2 = ‖B‖2,

where B is the second fundamental form of M into RN .

Proof: Let p ∈M and take {e1, · · · , en} a normal frame of TpM . Then, we have

(∇2
Xi)jk = ej(ek(Xi))

= ej(〈ek, ∂i〉)
= 〈∇0

ejek, ∂i〉

where {∂1, · · · , ∂N} is the canonical basis of RN and ∇0 is the connection of the Eu-
clidean metric of RN . Now, since {e1, · · · , en} is a normal frame, we have∇ejek = 0

and so ∇0
ejek = B(ej , ek). Finally, (∇2

Xi)jk = 〈B(ej , ek), ∂i〉. Now, by summing
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over i from 1 to N we get

N∑
i=1

‖∇2
Xi‖2 =

N∑
i=1

n∑
j,k=1

(
(∇2

Xi)jk

)2

=

N∑
i=1

n∑
j,k=1

〈B(ej , ek), ∂i〉2

=

n∑
j,k=1

‖B(ej , ek)‖2

= ‖B‖2

�

Now, putting
∑N
i=1 τ‖∇Xi‖2 = nτ and Lemma 3.5 into (16), we get

β1

∫
∂M

‖X‖2dvg 6
∫
M

(‖B‖2 + nτ)dvg(17)

The proof of the inequality is a combination of (14), the Cauchy-Schwarz inequality
and the Hsiung-Minkowski formula (7). We have

β1

(∫
∂M

tr (S)dvg

)2

6 β1

(∫
∂M

〈X,HS〉dvg
)2

6 β1

(∫
∂M

‖X‖2dvg
)(∫

∂M

‖HS‖2dvg
)

6

(∫
M

(‖B‖2 + nτ)dvg

)(∫
∂M

‖HS‖2dvg
)
,

which is the desired inequality.
Now, here again, if HS does not vanish identically and equality occurs, then as in
the proof of Theorem 3.1, we get that ‖HS‖ and tr (S) are non-zero constants and

∂M lies into a geodesic sphere of radius
|tr (S)|
‖HS‖

.

In addition, equality implies that the coordinate functions Xi are eigenfunctions of

the biharmonic Steklov problem. In particular, they satisfy ∆
2
X − τ∆X = 0 on

M , that is, M is a τ -biharmonic submanifold of RN . This concludes the proof. �

4. Upper bounds for Paneitz-like operators

On 4-dimensional Riemannian manifold (M4, g), the Paneitz operator, first intro-
duced in [27] by Paneitz (see also [28], is the fourth order differential operator
defined by

Pu = ∆2u− div

(
2

3
R∇u− 2Ric(∇u)

)
,

for any smooth function u, where div is the divergence, ∆ = −div∇ the Laplacian,
R the scalar curvature and Ric the (1, 1)-Ricci tensor associated with the metric g.
We will denote by ric the associated (2, 0)-tensor. It has been generalized in any
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dimension by Branson [10]. Namely, we have for n > 5,

Pu = ∆2u−−div

(
(n− 2)2 + 4

2(n− 1)(n− 2)
R∇u− 4

n− 2
Ric(∇u)

)
+
n− 4

2
Qu,

where Q is the Branson Q-curvature associated with the metric g. The Paneitz
operator is conformally covariant and plays a crucial role in the problem of pre-
scribing Q-curvature. In the last two decades, the Paneitz operator (and its links
with Q-curvature) has been intensively studied by many authors (see [16] for in-
stance).
In the present section, we are not interested in the conformal aspect of the Paneitz
operator but with its spectrum. In particular, we will give estimates of the first
eigenvalue of the Paneitz operator, when the 4-dimensional manifold (M4, g) is a
submanifold (especially a hypersurface) of a Euclidean space. In fact, we will con-
sider the so-called Paneitz-like operators for which the classical Paneitz operator in
dimension 4 is a particular case. We obtain general upper bounds which contain the
estimates proved by Chen and Li in [13]. The Paneitz-like operators are definied
for some constant a and b by

Pa,bu = ∆2u− div(aR∇u+ bRic∇u),

for any smooth function u on M . The positivity of Pa,b is ensured if na + b > 0
(see [38]). Here, we consider the weighted version of these operators. Namely, we
consider the following

P a,bf u = ∆2
fu− divf (aRf∇u+ bRicf∇u),

where divf , ∆f and Ricf are respectively the f -divergence, the f -Laplacian and

the Bakry-Émery Ricci curvature defined in Section 2. Moreover, we define Rf as
the trace of Ricf .

Theorem 4.1. Let (Mn, g) be a closed Riemannian manifold isomtrically immersed
into the weighted Euclidean space RNendowed with the density e−f . Let T be a sym-
metric and divergence-free (1, 1)-tensor on TM . Assume that the weighted Paneitz-

like operator P a,bf is positive. Then, the first non-zero eigenvalue Λ1 of P a,bf satisfies

Λ1

(∫
M

tr (T )µf

)2

6

(∫
M

(n2|H|2 + |∇f |2 + (na+ b)Rf )µf

)∫
M

(|HT |2+||T∇f ||2)µf .

Moreover,

• If f is constant, HT does not vanish identically and if equality occurs, then
tr (T ) and |HT | are non-zero constants and M is immersed into a geodesic

hypersphere of RN of radius |tr (T )|
|HT | .

In particular, if n = N − 1, M is a geodesic hypersphere of radius |tr (T )|
|HT | .

• If f is not constant and if equality holds in the case S = Id then M is
a self-shrinker for the mean curvature flow and f|M = a − c

2r
2
p, where rp

is the Euclidean distance to the center of mass p of M . In particular, if
n = N − 1 and H > 0 or n = 2, N = 3 and M is embedded and has genus
0, then M a geodesic hypersphere.

Before giving the prove, we state this elementary lemma.
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Lemma 4.2. We have

∆fX = −nH +∇f

Proof: The proof is elementary form the definition of ∆f . Indeed, we have

∆fX =

N∑
i=1

∆fX
i∂i

=

N∑
i=1

∆Xi∂i +

N∑
i=1

〈∇Xi,∇f〉∂i

= ∆X +

N∑
i=1

〈∂i,∇f〉∂i

= −nH +∇f,

where we have used the classical facts that ∆X = −nH and ∇Xi = ∂>i . �

Proof of Theorem 4.1: First, if needed, we make a translation in order to assume
that the center of mass of X for the measure µf is 0. Hence, we can use the
coordinates X1, · · · , XN as test functions in the Rayleigh quotient to get

Λ1

∫
M

|X|2µf 6
∫
M

〈X,P a,bf X〉µf .

Now, we compute the term
∫
M
〈X,P a,bf X〉µf . We have

∫
M

〈X,P a,bf X〉µf =

N∑
k=1

∫
M

XkP a,bf Xkµf

=

N∑
k=1

∫
M

Xk∆2
fX

kµf −
∫
M

N∑
k=1

Xkdivf
(
aRf∇Xk + bRicf (∇Xk)

)
µf

=

N∑
k=1

∫
M

|∆fX
k|2µf +

∫
M

N∑
k=1

(
aRf |∇Xk|2 + b〈Ricf (∇Xk),∇Xk〉

)
µf ,

where we have integrated by parts for the last line. Moreover, from Lemma 2.1, we
have

N∑
k=1

|∇Xk|2 = n and

N∑
k=1

Ricf (∇Xk,∇Xk|2) = tr (Ricf ) = Rf .

By Lemma 4.2, we have ∆fX = −nH +∇f , which gives∫
M

〈X,P a,bf X〉µf =

∫
M

(
n2|H|2 + |∇f |2 + (na+ b)Rf

)
µf

and therefore

(18) Λ1

∫
M

|X|2µf 6
∫
M

(
n2|H|2 + |∇f |2 + (na+ b)Rf

)
µf .
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Now, we multiply by
(∫
M

tr (T )µf
)2

and we get

Λ1

(∫
M

tr (T )µf

)2 ∫
M

|X|2µf 6

(∫
M

(
n2|H|2 + |∇f |2 + (na+ b)Rf

)
µf

)(∫
M

tr (T )µf

)2

6

(∫
M

(
n2||H|2 + |∇f |2 + (na+ b)Rf

)
µf

)(∫
M

〈HT − T∇f,X〉µf
)2

where we have used the generalized Hsiung-Minkowski formula (6). Then, using
the Cauchy-Schwarz inequality for the pointwise scalar product, then the Cauchy-
Schwarz inequality for the L2-scalar product and simplifying by

∫
M
|X|2µf we get

Λ1

(∫
M

tr (T )µf

)2

6

(∫
M

(
n2|H|2 + |∇f |2 + (na+ b)Rf

)
µf

)(∫
M

|HT − T∇f |2µf
)
,

Finally, since HT and T∇f are orthogonal, we get the wanted inequality

Λ1

(∫
M

tr (T )µf

)2

6

(∫
M

(n2|H|2 + |∇f |2 + (na+ b)

∫
M

Rf )µf

)∫
M

(|HT |2+|T∇f |2)µf ,

where we have used that |HT − T∇f |2 = |HT |2 + |T∇f |2 since HT is normal and
T∇f is tangent.
Now, assume that HT does not vanish identically. If equality occurs, then all the
above inequalities become equalities. In particular, we have HT = cX from the
equality case of Cauchy-Schwarz inequality, where c is a non-zero constant. This
means that the position vector X is everywhere normal to M . But, on the other
hand, since ∇|X|2 = X>, we get that ∇|X|2 = 0. Hence, |X| = r is constant
and M lies in a geodesic hypersphere of radius r. Moreover, since HT = cX, we
get that |HT | is also constant and from Equation (11), we conclude that tr (T ) =
−〈X,HT 〉 = − 1

c |HT |2. Thus, tr (T ) is also constant. Note that, since we assume
that HT does not vanish identically, tr (T ) and |HT | are non-zero constants and we

have r = |tr (T )|
|HT | .

Now, we will show that the immersion of M in this hypersphere SN−1(r) is T -

minimal, that is, H̃T = 0, where is defined by

H̃T =

n∑
i,j=1

T (ei, ej)B̃(ei, ej),

with B̃ the second fundamental form of M in SN−1(r). It is well known that

B = B̃ +B where B is the second fundamental form of SN−1 into RN and is given

by Bij = − 1
r2 δijX. From this and the definition of HT and H̃T , we get

HT = H̃T −
1

r2

n∑
i,j

T (ei, ej)δijX

= H̃T −
1

r2
tr (T )X

= H̃T −
|HT |2

tr (T )
X

= H̃T + cX = H̃T +HT .

We deduce that H̃T = 0. This concludes the proof. �
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We deduce immediately the following corollary when T is a tensor associated with
a higher order mean curvature.

Corollary 4.3. Let (Mn, g) be a closed Riemannian manifold isomtrically im-
mersed into the Euclidean space RN . Assume that the Paneitz-like operator Pa,b is
positive.

(1) If n 6 N − 2 and k ∈ {0, · · · , n − 1} is an even integer, then, the first
non-zero eigenvalue Λ1 of Pa,b satisfies

Λ1

(∫
M

Hkdvg

)2

6

(∫
M

(n2|H|2 + (na+ b)

∫
M

R)dvg

)∫
M

|Hk+1|2dvg.

Morever, if Hk+1 does not vanish identically and if equality occurs, then Hk

and |Hk+1| are non-zero constants and M is (k + 1)-minimally immersed

into a geodesic hypersphere of RN of radius |Hk|
|Hk+1| .

(2) If n = N − 1, for any k ∈ {0, · · · , n− 1}, the first non-zero eigenvalue Λ1

of Pa,b satisfies

Λ1

(∫
M

Hkdvg

)2

6

(∫
M

(n2|H|2 + (na+ b)

∫
M

R)dvg

)∫
M

H2
k+1dvg,

Morever, if Hk+1 does not vanish identically and if equality occurs, then
Hk and Hk+1 are non-zero constants and M is a geodesic hypersphere of

RN of radius |Hk|
|Hk+1| .

We finish this section by a result for the first eigenvalue of the Paneitz operator in
dimension at least 5. The proof is completely analogue to the previous one with
a =, b = and the presence of the order zero term Qu in the definition of P . We
state the following result without proof.

Theorem 4.4. Let (Mn, g), n > 4, be a closed Riemannian manifold isomtrically
immersed into the Euclidean space RN . Let T be a symmetric and divergence-free
(1, 1)-tensor on TM . Assume that the Paneitz operator P is positive. Then, the
first non-zero eigenvalue Λ1 of P satisfies

Λ1

(∫
M

tr (T )dvg

)2

6

(∫
M

(n2|H|2 +
n3 − 4n2 + 12n− 4

2(n− 1)(n− 2)
R)dvg

)∫
M

|HT |2dvg

+
n− 4

2
||Q||∞

(∫
M

tr (T )dvg

)2

.

Moreover, if HT does not vanish identically and equality occurs, then tr (T ) and
||HT || are non-zero constants M is T -minimally immersed into a geodesic sphere

of RN of radius |tr (T )|
||HT || .

�

5. Further inequalities

In this section, we derive from the estimates of Sections 3 and 4 some other esti-
mates. Namely, we can obtained estimates for submanifolds of spheres or projectives
space by the mean of the classical immersions of these spaces in euclidean spaces
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(see Section 5.1 and 5.2). We can obtain in Section 5.3 some isoperimetric estimates
for embedded hypersurfaces

5.1. Estimates in spheres.

Corollary 5.1. First, we have the following corollaries for submanifolds of spheres.
Let (Mn, g) be a connected and oriented closed Riemannian manifold isometrically
immersed into the Euclidean space SN endowed with a density e−f . Let T be a pos-
itive symmetric divergence-free (1, 1)-tensor over M and S a symmetric divergence
free (1, 1)-tensor over ∂M

σ1,T,f

(∫
∂M

tr (S)µf

)2

6

(∫
M

tr (T )µ̄f

)∫
∂M

(
||HS ||2 + tr (S)2 + ||S∇f ||2

)
µf .

Proof: The proof comes easily from Theorem 3.1. We denote by Φ the immersion of
M into SN and φ its restriction to ∂M . We also consider the canonical immersion

i of SN into RN+1 and we extend the weight f defined on SN to a weight f̃ on

RN+1, for instance by taking f̃(x) = |x|f
(
x
|x|

)
for any x ∈ SN and f̃(0) = 0. From

Theorem 3.1 we have

(19) σ1,T,f )

(∫
∂M

tr (S)µf

)2

6

(∫
M

tr (T )µ̄f

)∫
∂M

(
|H ′S |2 + |S∇f̃ |2

)
µf ,

where H ′S is defined by HS =
∑n
i,j=1 S(ei, ej)B

′(ei, ej) with B′ the second funda-

mental form of the immersion of ∂M into RN+1. Obviously, the second fundamental
forms B of φ and B′ of i◦φ are linked by the relation B′ = B−gφ. Hence, we get im-
mediately H ′S = HS−tr (S)φ. Therefore, we deduce that ||H ′S ||2 = ||HS ||2+tr (S)2,
since HS and φ are orthogonal and ||φ|| = 1 since M (and so ∂M) is contained in

the sphere SN . Reporting this in (19), and since f coincides with f̃ on M , we have

∇f̃ = ∇f and so

σ1,T,f

(∫
∂M

tr (S)µf

)2

6

(∫
M

tr (T )µ̄f

)∫
∂M

(
||HS ||2 + tr (S)2 + ||S∇f ||2

)
µf .

This concludes the proof. �

Corollary 5.2. Let (Mn, g) be a connected and oriented compact Riemannian man-
ifold with non-empty boundary ∂M isometrically immersed into the sphere SN . Let
S be a symmetric divergence free (1, 1)-tensor over ∂M . Then, the first eigenvalue
of the biharmonic Steklov problem satisifes

β1

(∫
∂M

tr (S)dvg

)2

6

(∫
M

(‖B‖2 + n+ nτ)dvg

)(∫
∂M

||HS ||2 + tr (S)dvg

)
.

5.2. Estimates in projective spaces. As mentionned in [25], in the case where
S = Id , we can obtain estimates for submanifolds of projective spaces. Indeed,
proceeding as in the proof of Corollary 5.1 with the standard embeddings of the
projective space KPn, K = R, C or H, we get form Theorem 3.1

σ1,T (Vf (∂M))
2 6

(∫
M

tr (T )µ̄f

)∫
∂M

(
||H ′||2 + ||∇f ||2

)
µf ,
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where H ′ is the mean curvature of ∂M ↪→ KPn ↪→ RN as a submanifold of RN .
The mean curvature of ∂M in KPn is denoted H. Straightforward computations
show that ||H ′||2 = ||H||2 + c(m), with

c(m) =


2(m+1)
m if K = R

2(m+2)
m if K = C

2(m+4)
m if K = H,

and where m is the dimension of M (see [19] for details). Note that Vf denote the
f -volume, that is, the volume for the measure µf . Hence, we have

Corollary 5.3. Let (Mn, g) be a connected and oriented closed Riemannian man-
ifold with non-empty boundary ∂M , isometrically immersed into MN endowed with
a density e−f . Let T be a positive symmetric divergence-free (1, 1)-tensor over
M . Then, the first eigenvalue of the generalized Steklov problem associated to the
operator LT,f satisfies

σ1,T,f (Vf (∂M))
2 6

(∫
M

tr (T )µ̄f

)∫
∂M

(
||H||2 + ||∇f ||2 + c(m)

)
µf .

where µ is the measure on M defined by µf = e−fdvg and with

c(n) =


1 if MN = SN
2(n+1)
n if MN = RPN

2(n+2)
n if MN = CPN

2(n+4)
n if MN = HPN .

This remark also holds for the estimates of Section 4. Indeed, we deduce immedi-
ately from Theorem 3.1 for S = Id the following estimates.

Corollary 5.4. Let (Mn, g) be a connected and oriented closed Riemannian man-
ifold isometrically immersed into MN endowed with a density e−f . Let T be a
positive symmetric divergence-free (1, 1)-tensor over M . Then, the first eigenvalue
of the operator LT,f satisfies

λ1(LT,f ) (Vf (M))
2 6

(∫
M

tr(T )µ

)(∫
M

(
||H||2 + ||∇f ||2 + c(n)

)
µf

)
,

where µ is the measure on M defined by µf = e−fdvg and with

c(n) =


1 if MN = SN
2(n+1)
n if MN = RPN

2(n+2)
n if MN = CPN

2(n+4)
n if MN = HPN .

For Paneitz-like operators, we have the following Corollary obtained from Theorem
4.1.

Corollary 5.5. Let (Mn, g) be a connected and oriented closed Riemannian man-
ifold with non-empty boundary ∂M , isometrically immersed into MN endowed with

a density e−f . Assume that the weighted Paneitz-like operator P a,bf is positive.

Then, the first non-zero eigenvalue Λ1 of P a,bf satisfies

Λ1Vf (M) 6

(∫
M

(n2|H|2 + |∇f |2 + (na+ b)Rf + c(n))µf

)(∫
M

(
||H||2 + ||∇f ||2 + c(n)

)
µf

)
,
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where µ is the measure on M defined by µf = e−fdvg and with

c(n) =


1 if MN = SN
2(n+1)
n if MN = RPN

2(n+2)
n if MN = CPN

2(n+4)
n if MN = HPN .

5.3. Isoperimetric estimates for embedded hypersurfaces. We consider now
the case where the hypersurface M is embedded into Rn+1 and so bounds a do-
main Ω. In this case, we can derive easily some estimates for the three eigenvalue
problems considered above in terms both volumes V (M) and V (Ω).

Proposition 5.6. Let (Mn, g) be a closed, connected and oriented manifold isomet-
rically embedded into the Euclidean space Rn+1 (hence bounding a simply connected
domain Ω). Let T a symmetric (1, 1)-tensor with vanishing divergence. Assume
moreover that T is positive definite. Then,

(1) the first eigenvalue of the generalized Steklov problem satisifes

σ1,T 6
V (M)

(n+ 1)2V (Ω)2

(∫
Ω

tr (T )dvḡ

)
.

(2) the first eigenvalue of the biharmonic Steklov problem satisifes

α1 6
V (M)

(n+ 1)2V (Ω)2

(
(n+ 1)V (Ω) + bnV (M)

)
.

(3) the first eigenvalue of the Steklov-Wentzell problem satisifes

β1 6
τV (M)

(n+ 1)V (Ω)
.

(4) if the Paneitz-like operator P a,b is positive, then, the first non-zero eigen-
value Λ1 of P a,b satisfies

Λ1 6
V (M)

(n+ 1)2V (Ω)2

(∫
M

(n2|H|2 + (na+ b)R)dvg

)
.

(5) the first eigenvalue of the operator LT satisfies

λ1(LT ) 6
V (M)

(n+ 1)2V (Ω)2

∫
M

tr(T )dvg.

Moreover, for each inequality, if equality occurs, then M is a geodesic hypersphere
(and Ω is a round ball).

Proof: The proof of these inequalities is based on the following elementary fact that
on Ω,

div(X) = n+ 1.
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From this, we have

(n+ 1)V (Ω) =

∫
Ω

div(X)dvg

=

∫
M

〈X, ν〉dvg

6
∫
M

|X|dvg,

where we have used the Stokes formula. Now, by the Cauchy-Schwarz inequality,
we get

(20) (n+ 1)2V (Ω)2 6
∫
M

|X|2dvg.

Now, using (20) we get immediately the five inequalities of Proposition 5.6 respec-
tively with, (10), (14), (17), (18) and the well-known analogue for the operator LT
(see [33])

λ1(LT )

∫
M

|X|2dvg 6
∫
M

tr (T )dvg.

6. Pinching results

The common point is all the above inequalities is that we use coordinates as test
functions together with an appropriate Hsiung-Minkowksi formula. Moreover for
the codimension 1 case, equality occurs if and only if the hypersurfaces is a round
sphere and it turns out that the moment of inertia ||X||2 of M satisfies the limitting
case of the following inequality.

Proposition 6.1. Let (Mn, g) be a closed, connected and Riemannian manifold
isomtrically immersed into Euclidean space Rn+1 by X. Let S be a symmetric and
divergence-free (1, 1)-tensor on TM . Then, we have

(21) ||X − X̄||2 >

∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣
||HS ||2V (M)

.

Moreover, if HS does not vanish identically, then equality occurs if and only tr (S)

and ||HS || are non-zero constants and X(M) is a geodesic sphere of radius |tr (S)|
||HS || .

Proof: For simplicity and without lost of generality, we assume that X̄ = 0. The
generalized Hsiung-Minkowksi formula says∫

M

(tr (S) + 〈HS , X〉) dvg.
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Hence, we obtain by using the pointwise and then integral Cauchy-Schwarz inequal-
ity ∣∣∣∣∫

M

tr (S)dvg

∣∣∣∣ =

∣∣∣∣∫
M

〈HS , X〉dvg
∣∣∣∣

6
∫
M

||HS || · |〈X, ν〉|dvg

6

(∫
M

||HS ||2dvg
)1/2(∫

M

〈X, ν〉2dvg
)1/2

6

(∫
M

||HS ||2dvg
)1/2(∫

M

||X||2dvg
)1/2

= ||HS ||2||X||2V (M),

which is the desired inequality.
Now, assume that HS does not vanish identically. If equality occurs, since
||HS ||2 6= 0, then equality occurs in the pointwise Cauchy-Schwarz inequality
|〈X, ν〉| 6 ||X|| at any point of M . This implies, as mentionned previously, that
X(M) is a geodesic sphere. We denote by R the radius of this sphere. Now,
equlity also imply equality in the integral Cauhcy -Schwarz inequality so ||HS ||
and |〈X, ν〉| = R are proportional and so ||HS || is constant. Finally, since X(M)
is a geodesic sphere of radius R, its second fundamental form is B = 1

Rg. Hence,

by definition of HS = tr (B ◦ S), get that ||HS || = 1
R |tr (S)|. This mean that tr (S)

is also a non-zero constant and R = |tr (S)|
||HS ||2 .

The converse is obvious. �

As an immediate corollary, we get lower bounds for the extrinsic radius (see
[30, 31] to compare with the known bounds in terms of mean curvatures).

Corollary 6.2. Let (Mn, g) be a closed, connected and Riemannian manifold
isomtrically immersed into Euclidean space Rn+1 by X. Let S be a symmetric
and divergence-free (1, 1)-tensor on TM . Then, the extrinsic radius R(M) of M
satisfies

R(M) >

∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣
||HS ||2V (M)

.

Moreover, if HS does not vanish identically, then equality occurs if and only tr (S)
and ||HS || are non-zero constants and X(M) is a geodesic sphere of radius R(M)

and R(M) = |tr (S)|
||HS || .

The inequality (21) implies as corollaries the lower bound of the extrinsic radius
(Corollary 6.2) as well as the upper bounds for the operators LT ([33]), Paneitz-
like (Theorems 4.1) and for the generalized Steklov problem (Theorem 3.1), all for
the non-weighted case and for hypersurfaces. Then, it is natural to think that a
pinching result associated with (21) or another appropriate estimate of ||X||2 will
implies pinchin results for the other inequalities cited above. And this is indeed the
case as we will see in the sequel.
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We introduce the following pinching of the moment of inertia

(Ip,ε) ||X||2 6

∣∣∣∣∫
M

tr (S)dvg

∣∣∣∣
||HS ||2pV (M)

(1 + ε)

Theorem 6.3. Let n > 2 and (Mn, g) be a connected, oriented and closed Rie-
mannian manifold isometrically immersed into Rn+1 by X. Assume that M is
endowed with a symmetric and divergence-free (1, 1)-tensor S. Assume in addi-
tion that T is positive definite, HS is not identically zero and that for some q > n
there holds V (M)‖B‖nq 6 A. Let p > 1. Then there exists ε0 = ε0(n, p, q, A) > 0,
α = α(n, q) and C = C(n, p, q, A) > 0 such that if (Ip,ε) holds with ε < ε0,
then M is diffeomorphic and Cεα-almost-isometric to the sphere S(X̄, r) with

r =
|∫M tr (S)dvg|
||HS ||2pV (M) . That is, there exists a natural diffeomorphism

(22) F : (M,d1)→ (S(r), d2)

we have

(23) |d2(F (x1), F (x2))− d1(x1, x2)| 6 Crεα ∀x1, x2 ∈M.

Moreover, M is embedded and X(M) is a starshaped hypersurface.

It is now classical for such pinching results that the proof needs two steps. The first
one gives an L2-proximity of the hypersurface with the desired sphere using the
pinching condition. This step is given by Lemmas 6.4 and 6.5. The second step,
which does not depend on any pinching, allows to go from L2 to L∞ proximity.
We will recall the needed lemmas without proof.

First, we have these two elementary lemmas.

Lemma 6.4. If (Ip,ε) holds, then

||XT ||22 6 ε||X||22.

Proof:
We have

||XT ||22V (M) =

∫
M

|X|2dvg −
∫
M

〈X, ν〉2dvg

6 ||X||22V (M)− 1

||HS ||22p

∫
M

HS〈X, ν〉dvg

6 ||X||22V (M)− 1

||HS ||22p

∫
M

tr (S)dvg

6 ||X||22V (M)

(
1− 1

1 + ε

)
6 ||X||22V (M)ε

�

Lemma 6.5. If (Ip,ε) holds, then

1− ||X||1
||X||2

6 K(p)ε,
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where K = K(p) is a constant depending only on p.

Proof: From the pinching condition and th Hsiung-Minkowski formula, we have

‖HS‖2p‖X‖2 6

∫
M

tr (S)

V (M)
√

1− ε

6

∫
M
|〈X,HS〉|

V (M)
√

1− ε

Now, using the Hölder inequality and the log-convexity of || · ||q with respect to q,
we get

‖HS‖2p‖X‖2 6
1√

1− ε
‖HS‖2p‖X‖ 2p

2p−1

6
1√

1− ε
‖HS‖2p‖X‖

1− 1
p

1 ‖X‖
1
p

2 .

Finally, we obtain

(24) ‖X‖2 6 (1− ε)−
p

2(p−1) ‖X‖1

and hence

(25) 1− ‖X‖1
‖X‖2

6 1− (1− ε)
p

2(p−1) 6 K(p)ε

with K = K(p) = p
2(p−2) . �

Now, we recall without proof the two following lemmas which are indepen-
dant of any pinching conditions.

Lemma 6.6. [3, 24] Let q > n be a real number. There exists a constant Γ(n, q) >
0, so that for any isometrically immersed, compact submanifold Mn of Rn+1 we
have
(26)

‖|X − X̄| − ‖X − X̄‖2‖∞ 6 Γ
(
V (M)‖H‖nq

) γ
n ‖X − X̄‖2

(
1− ‖X − X̄‖1
‖X − X̄‖2

) 1
2(γ+1)

,

where γ = nq
2(q−n) .

Note that this lemma implies in particular that

(27) ‖|X|‖∞ 6 Γ
(
V (M)‖H‖nq

) γ
2 + 1)||X||2

Lemma 6.7. [34] Let q > n and X : M ↪→ Rn+1 be the immersion of a closed
hypersurface. Then there exists a constant Γ′ = Γ′(n, q), such that

(28) ‖XT ‖∞ 6 Γ′
(
V (M)‖B‖nq ‖X‖∞

) γ
γ+1 ‖XT ‖

1
γ+1

2 .

Now, using these lemmas, we can finish in a now classical way the proof of Theorem
6.3. First, combining Lemmas 6.5 and 6.6, we get

(29) ‖|X| − ‖X‖2‖∞ 6 ΓA
γ
2K

1
2(γ+1) ||X||2ε

1
2(γ+1)
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Now, assuming that ε < 1, we get from (Ip,ε) that ||X||2 6 2
|∫M tr (S)dvg|
||HS ||2pV (M) . For more

compactness in the formulas, we will denote r =
|∫M tr (S)dvg|
||HS ||2pV (M) and so we have

(30) ||X||2 6 2r.

Thus, using (29), (Ip,ε), and (30) we get

‖|X| − r‖∞ 6 ‖|X| − ‖X‖2‖∞ + |‖X‖2 − r|

6 2rΓA
γ
2K

1
2(γ+1) ε

1
2(γ+1) + rε

6 r(2ΓA
γ
2K

1
2(γ+1) ε

1
2(γ+1) + ε)

6 C1rε
1

2(γ+1) ,(31)

where C1 = (2ΓA
γ
2K

1
2(γ+1) + 1). Note that the last line comes from the fact that

1
2(γ+1) < 1 and we have assumed ε < 1. We want to point out that the constant

C1 depends on n, p, q and A. We deduce immediately from this that

(32) ‖X‖∞ 6 r
(

1 + C1ε
1

2(γ+1)

)
.

�

On the other hand, using successively Lemma 6.7, Lemma 6.4, (32) and
(Ip,ε) we get

‖XT ‖∞ 6 Γ′ (A‖X‖∞)
γ
γ+1 ‖XT ‖

1
γ+1

2

6 Γ′ (A‖X‖∞)
γ
γ+1 ‖X‖

1
γ+1

2 ε
1

2(γ+1)

6 Γ′A
γ
2

(
ΓA

γ
2 + 1

) γ
γ+1 ‖X‖2ε

1
2(γ+1)

6 2rΓ′A
γ
2

(
ΓA

γ
2 + 1

) γ
γ+1

ε
1

2(γ+1)

6 C2rε
1

2(γ+1) ,(33)

where C2 = 2Γ′A
γ
2

(
ΓA

γ
2 + 1

) γ
γ+1 is a constant depending only on n, p, q and A.

Now, we set ε1 = inf
{√

2−1√
2C1

, 1
2C2

}2(γ+1)

. Note that ε1 depends only on

n, p, q and A and if ε 6 ε1, we have

C1ε
1

2(γ+1) < 1, C2ε
1

2(γ+1) < 1 and
(

1− C1ε
1

2(γ+1)

)2

−
(
C2ε

1
2(γ+1)

)2

6
1

4
.

From this last inequality, with (32) and (33), we deduce that

(34) 〈X, ν〉2 = |X|2 − |XT |2 > r2

4
.

Now, we consider the map

F : M −→ S(0, r)

x 7−→ r X(x)
|X(x)| .

First of all, from (31) and the fact that C1ε
1

2(γ+1) < 1, we get ‖|X| − r‖∞ < r.
Therefore |X| never vanishes and so F is well defined. Now, we will compute the
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differential of F . Let u ∈ TxM be a unit vector. We get immediately that

dFx(u) =
r

|X|

(
u− 〈u,X〉

|X|2

)
,

and so ∣∣|dFx(u)|2 − 1
∣∣ 6 ∣∣∣∣ r2

|X|2
− 1

∣∣∣∣+
r2

|X|4
〈u,X〉2

6
1

|X|2
∣∣|X| − r∣∣ · ∣∣|X|+ r

∣∣+
r2|XT |2

|X|4

Now, from (31), (32), (33) and the fact that C1ε
1

2(γ+1) < 1, we get

∣∣|dFx(u)|2 − 1
∣∣ 6 2r2C1ε

1
2(γ+1)

|X|2
+
r3C2ε

1
2(γ+1)

|X|3
.

Finally, from (34), we deduce that 1
|X| 6

2
r and so∣∣|dFx(u)|2 − 1

∣∣ 6 2C1 + C2

4
ε

1
2(γ+1) = C3ε

1
2(γ+1)(35)

We put ε0 = inf

{
ε1,
(

1
2C3

)2(γ+1)
}

. We get from this that |dFx(u)|2 > 1
2 which

implies that F is a local diffeomorphism. Since M and S(0, r) are connected, M is
closed and S(0, r) is simply connected, then F is a global diffeomorphism.
In addition, since F which is of the form G ◦X is injective, then X is injective and
so the immersion X is an embedding.
Moreover, the condtion (34) and the connectedness of M implies that the support
function 〈X, ν〉 never vanishes (say is positive if ν is the outward unit normal) which
implies that X(M) is a starshaped hypersurface (see [21]).
Finally, from (35), we get that for any x, y ∈M

|d2(f(x), f(y))− d(x, y)| 6Md1(x, y),

where d1 and d2 are the Riemannian distance on M and S(0, r) respectively and
M = sup

{∣∣|dFx(u)|2 − 1
∣∣ , x ∈M u ∈ UxM

}
. Hence, we deduce that

|d2(f(x), f(y))− d(x, y)| 6 2πrC3ε
α.

This concludes the proof of Theorem 6.3 by setting C = 2πC3, which depends
onpy on n, p, q and A as C3. �

Now, we introduce the pinching condition associated with the optimal in-
equality involving the first eigenvalue λ1,T of the operator LT , the first eigenavlue
σ1,T of the generalized Steklov problem associated with LT , the first eiganvalue
Λ1 of the Paneitz-like operator Pa,b and the extrinsic radius R(M). Namely, for
p > 1, we set

(Lp,ε) λ1,T

(∫
M

tr (S)dvg

)2

> (1− ε)
(∫

M

tr (T )dvg

)
‖HS‖22pV (M),

(Sp,ε) σ1,T

(∫
M

tr (S)dvg

)2

> (1− ε)
(∫

Ω

tr (T )dvg

)
‖HS‖22pV (M),
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(Wp,ε) α1

(∫
M

tr (S)dvg

)2

> (1− ε)
(
nV (Ω) + b(n− 1)V (M)

)
‖HS‖22pV (M),

(Bp,ε) β1

(∫
M

tr (S)dvg

)2

> (1− ε)nτV (Ω)‖HS‖22pV (M)

(Pp,ε)

Λ1

(∫
M

tr (S)dvg

)2

> (1− ε)
(∫

M

(n2H2 + (na+ b)Rg)dvg

)
‖HS‖22pV (M),

(Rp,ε) R(M)2 6

(∫
M

tr (S)dvg

)2

||HS ||22pV (M)2
(1 + ε).

Proposition 6.8. Let p > 1 and ε ∈ (0, 1
2 ). If one of the pinching conditions

(Lp,ε), (Sp,ε), (Wp,ε), (Bp,ε), (Pp,ε) or (Rp,ε) holds, then also holds (I2,2ε).

Proof: First, we recall that from the Rayleigh quotient with coordinates as test
functions we have

λ1(LT )

∫
M

|X|2dvg 6
∫
M

tr (T )dvg

Now, if (Lp,ε) holds, then, we have

||X||22 6

∫
M

tr (T )dvg

λ1(LT )

6
1

1− ε
·
(∫
M

tr (S)dvg
)2

||H||22pV (M)

6 (1 + 2ε)

(∫
M

tr (S)dvg
)2

||H||22pV (M)
,

if ε < 1
2 , which is exactly (I2,ε).

The same argument holds for the other pinching conditions, we will write them
down more quickly.
For the Steklov problem, from (10) and if (Sp,ε) holds for ε < 1

2 , we have

||X||22 6
∫

Ω
tr (T )dvg

σ1,TV (M)
6

1

1− ε
·
(∫
M

tr (S)dvg
)2

||H||22pV (M)
6 (1 + 2ε)

(∫
M

tr (S)dvg
)2

||H||22pV (M)
.

For the Steklov-Wentzell problem, if (Wp,ε) holds for ε < 1
2 , we get from (14)

||X||22 6
nV (Ω) + (n− 1)V (M)

α1V (M)
6

1

1− ε
·
(∫
M

tr (S)dvg
)2

||H||22pV (M)
6 (1+2ε)

(∫
M

tr (S)dvg
)2

||H||22pV (M)
.

For the biharmonic Steklov problem, we recall that (17) holds, that is,

β1

∫
M

‖X‖2dvg 6
∫

Ω

(‖B‖2 + nτ)dvg.

Since M is a hypersurface, Ω is a domain of Rn and so B = 0, which give

β1

∫
M

‖X‖2dvg 6 nτV (Ω)
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Hence, if (Bp,ε) holds for ε < 1
2 , we obtain

||X||22 6
nτV (Ω)

β1V (M)
6

1

1− ε
·
(∫
M

tr (S)dvg
)2

||H||22pV (M)
6 (1 + 2ε)

(∫
M

tr (S)dvg
)2

||H||22pV (M)
.

For the Paneitz-like operators, from (18) and if (Pp,ε) holds for ε < 1
2 , we get

||X||22 6
∫
M

(
n2|H|2 + (na+ b)R

)
σ1,T

6
1

1− ε
·
(∫
M

tr (S)dvg
)2

||H||22pV (M)
6 (1+2ε)

(∫
M

tr (S)dvg
)2

||H||22pV (M)
.

Finally, for the extrinsic radius, we have obviously

||X||22 6 R(M)2 6 (1 + ε)

(∫
M

tr (S)dvg
)2

||H||22pV (M)
.

This concludes the proof of the Proposition. From this proposition and Theorem
6.3, we obtain these final two corollaries. The first one give a pinching result for
the first eigenvalue of the operators LT and Paneitz-like operators andas well as for
the extrinsic radius for which the hypersurfaces are not supposed to be embedded.

Corollary 6.9. Let (Mn, g) be a closed, connected and oriented manifold iso-
metrically immersed into the Euclidean space Rn+1 by X. Let S and T be two
symmetric (1, 1)-tensors with vanishing divergence. Assume moreover that T is
positive definite, HS does not vanish identically and that for some q > n there
holds V (M)‖B‖nq 6 A. Let p > 1. Then there exists ε0 = ε0(n, p, q, A) > 0,
α = α(n, q) and C = C(n, p, q, A) > 0 such that if (Lp,ε), (Pp,ε) or (Rp,ε) holds with
ε < ε0, then M is diffeomorphic and Cεα-almost-isometric to the sphere S(X̄, r)

with r =
|∫M tr (S)dvg|
||HS ||2pV (M) . Moreover, M is embbeded and X(M) is a starshaped hyper-

surface.

This second corollary concerns the Steklov problems where the hypersurfaces need
to be embedded and bound domains.

Corollary 6.10. Let (Mn, g) be a closed, connected and oriented manifold iso-
metrically embedded into the Euclidean space Rn+1 by X. Let S and T be two
symmetric (1, 1)-tensors with vanishing divergence. Assume moreover that T is
positive definite, HS does not vanish identically and that for some q > n there
holds V (M)‖B‖nq 6 A. Let p > 1. Then there exists ε0 = ε0(n, p, q, A) > 0,
α = α(n, q) and C = C(n, p, q, A) > 0 such that if (Sp,ε), (Wp,ε) or (Bp,ε)
holds with ε < ε0, then M is diffeomorphic and Cεα-almost-isometric to the sphere

S(X̄, r) with r =
|∫M tr (S)dvg|
||HS ||2pV (M) . Moreover X(M) is a starshaped hypersurface.

We finish this paper with the following remarks.

Remarks 6.11. (1) First, we want to recall that the condition (35) allwos to
obtain a proximity with the sphere for the Lipschitz distance which implies
in particular that the spectrum of the Laplacian is close to the spectrum of
the sphere (of corresponding radius).

(2) In our theorems, we consider a control on the second fundamental. This
condition is required to get the promixity for the Lipschitz ditance and the
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diffeomorphism. It is known that such a control is necessary. With a con-
trol only on the mean curvature, we can only get a proximity in Hausdorff
distance ( see [2, 14, 30] for instance).

(3) In [2], some examples of hypersurfaces satisying the pinching condition
(Ip,ε) with S = Id with a control of the mean curvature but non diffeo-
morphic to the sphere are given.

(4) Always in [2], the authors show that an asymptotic closeness with the spec-
trum of the Laplacian with the spectrum of the sphere can be obtained (see
also [3]) with a control of the mean curvature. This result can be adapted
here with minor modifications.

�
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