EXERCICES D'APPLICATION SUR CHAPITRE 5

Exercice 1:

Chaque semaine de l'année comptant six jours ouvrables, on a relevé la recette en millions de centimes d'un supermarché le lundi et le samedi.

Un échantillon de six semaines a donné les résultats suivants :

Semaines N°	1	2	3	4	5	6	7	8	9	10
Recette de lundi (x)	56	60	52	49	56	46	51	63	49	57
Recette de samedi (y)	86	93	77	67	81	70	71	91	67	82

- 1) donner la valeur d'un paramètre qui permet de mesurer l'intensité de la relation linéaire entre x et y
- 2) déterminer l'équation de la droite de régression des recettes du samedi en fonction des recettes de lundi
- 3) quelle peut être la recette du samedi d'une semaine où la recette de lundi est de 55 ?

Exercice 2:

On a 10 entreprises et des caractères statistiques x: « nombre de commerciaux » et y: « ventes mensuelles du produit », on a obtenu le tableau statistique suivant :

N° de l'entreprise	1	2	3	4	5	6	7	8	9	10
nombres de commerciaux (x)	15	8	6	24	3	12	17	10	5	28
Ventes de produits (y)	64	25	22	92	14	62	75	65	20	98

- 1) calculer le coefficient qui permet de mesurer le degré de liaison des deux variables
- 2) Déterminer l'équation de la droite de régression ventes de produits en fonction de nombres de commerciaux
- 3) Quelle estimation de vente aura-t-on pour une entreprise qui a 18 Commerciaux ?

Exercice 3

Un directeur de banque aimerait savoir s'il existe une relation entre le revenu annuel (x) d'une famille et le montant d'argent consacré à l'épargne (y), pour un échantillon de 10 familles, il a obtenu les résultats suivants (en 10^4 DH).

Familles	1	2	3	4	5	6	7	8	9	10
Revenu (x)	12	15	13	10	10	14	16	18	16	14
Epargne (y)	0,2	1,2	1	0,7	0,3	1	1,6	1,4	1,2	0,7

- 1) Existe-il une relation entre les 2 variables ?
- 2) Déduire les équations des droites de régression de y en x et x en y
- 3) Quel montant d'argent, ce directeur peut-il espérer qu'une famille, à revenu de 110000 DHS, consacre à l'épargne.
- 4) Estimer le montant de revenu d'une famille ayant une épargne de 350000 DHS

CORRIGE EXERCICE 3

Xi	$\mathbf{y_i}$	x_iy_i	X_i^2	$\mathbf{y_i}^2$
12	0.2	2.4	144	0.04
15	1.2	18	225	1.44
13	1	13	169	1
10	0.7			
10	0.3	••		
14	1			
16	1.6			
18	1.4			
16	1.2			
14	0.7			
138	9.3	137.2	1966	10.51

1) la relation entre x et y on calcule le coefficient de corrélation

$$\mathbf{r} = \sqrt{a \times a'}$$

$$a = \frac{\sum x_i y_i - n.\overline{x}.\overline{y}}{\sum x_i^2 - n\overline{x}^2} = \frac{137.2 - 10 \times 13.8 \times 0.93}{1966 - 10 \times 13.8^2} = 0.1438311$$

$$a' = \frac{\sum x_i y_i - n.\overline{x}.\overline{y}}{\sum y_i^2 - n\overline{y}^2} = \frac{137.2 - 10 \times 13.8 \times 0.93}{10.51 - 10 \times 0.93^2} = 4.76088$$

$$\mathbf{r} = \sqrt{0.1438311 \times 4.76088} = \mathbf{0.8275}$$

la corrélation entre x et y est forte et positive

2) les équations des droites Dy en x et D'x en y y= ax+b cherchons b

$$b = \overline{y} - a\overline{x} = 0.93 - 0.1438311 \times 13.8 = -1.054869$$

$$y = 0.1438311x - 1.054869$$

cherchons l'équation de droite D' x en y $\mathbf{x} = \mathbf{a}'\mathbf{x} + \mathbf{b}'$ déterminons b' $b' = \overline{x} - a' \overline{y} = 13.8 - 4.76088 \times 0.93 = 9.3723816$

L'équation de la droite D' x est x = 4.76088y + 9.3723816

3) il suffit de remplacer x= 11 dans l'équation de la droite y = 0.1438311(11) - 1.054869 = 0,5272731

Soit un épargne potentiel de 0,5272. 10⁴ DH

4) il suffit de remplacer y= 35 dans l'équation de la droite x = 4.76088(35) + 9.3723816 = 176,0031816

Soit un revenu de 176,0031816 . 10⁴ DH

EXERCICE 1

Xi	y _i	X _i Y _i	X _i ²	y_i^2
56	86	4816	3136	7396
60	93	5580	3600	8649
52	77	4004	2704	5929
49	67	3283	2401	4489
56	81	4536	3136	6561
46	70	3220	2116	4900
51	71	3621	2601	5041
63	91	5733	3969	8281
49	67	3283	2401	4489
57	82	4674	3249	6724
539	785	42750	29313	62459

$$\frac{-}{x} = \frac{539}{10} = 53.9$$
 $\frac{-}{y} = \frac{785}{10} = 78.5$

2 la relation entre x et y on calcule le coefficient de corrélation

$$\mathbf{r} = \sqrt{a \times a'}$$

$$a = \frac{\sum x_i y_i - n.\overline{x}.\overline{y}}{\sum x_i^2 - n\overline{x}^2} = \frac{42750 - 10 \times 53.9 \times 78.5}{29313 - 10 \times 53.9^2} = 1,680720583$$
$$a' = \frac{\sum x_i y_i - n.\overline{x}.\overline{y}}{\sum y_i^2 - n\overline{y}^2} = \frac{42750 - 10 \times 53.9 \times 78.5}{62459 - 10 \times 78.5^2} = 0,524208009$$

$$\mathbf{r} = \sqrt{1,680720583 \times 0,524208009} = \mathbf{0,938}$$

la corrélation entre x et y est forte et positive

2) les équations des droites Dy en x et D'x en y y= ax+b

cherchons b

$$b = \overline{y} - a\overline{x} = 78.5 - 1.680720583 \times 53.9 = -12.090839$$

$$y = 1.680720583x - 12.090839$$

3) la prévision de la recette de lundi si la recette de samedi est de 55

Il suffit de remplacer 55 dans l'équation de droite y = ax + b

$$y = 1.680720583(55) - 12.090839 = 80,34879307$$

EXERCICE 2

Xi	y _i	x _i y _i	$\mathbf{x_i}^2$	y_i^2
15	64	960	225	4096
8	25	200	64	625
6	22	132	36	484
24	92	2208	576	8464
3	14	42	9	196
12	62	744	144	3844
17	75	1275	289	5625
10	65	650	100	4225
5	20	100	25	400
28	98	2744	784	9604
128	537	9055	2252	37563

$$\bar{x} = \frac{128}{10} = 12.8$$
 $\bar{y} = \frac{537}{10} = 53.7$

<u>1)</u> le coefficient qui permet de mesurer le degré de liaison des deux variables est le coefficient de corrélation

$$r = \frac{\sum x_i y_i - n.\overline{x}\overline{y}}{\sqrt{\sum (x_i^2 - n\overline{x}^2)(\sum y_i^2 - n\overline{y}^2)}} = \frac{9055 - 10 \times 12,8 \times 53,7}{\sqrt{(2252 - 10 \times 12,8^2)(37563 - 10 \times 53,7^2)}}$$

r = 0.942 Corrélation positive forte

<u>2)</u> l'équation de la droite de régression ventes de produits en fonction de nombres de commerciaux est sous la forme y = ax + b

cherchons les coefficients a et b

$$a = \frac{\sum x_i y_i - n.\overline{x}.\overline{y}}{\sum x_i^2 - n\overline{x}^2} = \frac{9055 - 10 \times 12,8 \times 53,7}{2252 - 10 \times 12,8^2} = 3,55508$$

cherchons b

$$b = \overline{y} - a\overline{x} = 53,7 - 3,55508 \times 12,8 = 8,194976$$

$$y = 3,55508x + 8,194976$$

2) l'estimation de vente qu'on aura pour une entreprise qui a 18 Commerciaux est :

$$y = 3,555089(18) + 8,194976 = 72,186578$$