Module: Mise sous forme canonique d'un trinôme.

1) Compléter le tableau suivant en utilisant les identités remarquables $a^2 + 2ab + b^2 = (a + b)^2$ et $a^2 - 2ab + b^2 = (a - b)^2$

a	b	$(a \pm b)^2$ (forme factorisée)
		(30.000 30.000)
x	2	$(x+2)^2$
X	$\frac{5}{2}$	$(x + \frac{5}{2})^2$
		x 2

2) Utiliser la méthode précédente pour mettre les trinômes suivants sous la forme canonique :

a)
$$x^2 - 6x - 14$$

b)
$$x^2 + 8x - 33$$

c)
$$x^2 + 3x - 4$$

d)
$$x^2 + 7x + 2$$

a)
$$x^2 - 6x - 14$$
 b) $x^2 + 8x - 33$ c) $x^2 + 3x - 4$ d) $x^2 + 7x + 2$ e) $x^2 - \frac{5}{3}x + \frac{4}{3}$

Exemple:
$$x^2 + 4x + 9 = \underbrace{x^2 + 4x + 4}_{a^2 + 2ab + b^2} - 4 + 9 = \underbrace{(x+2)^2}_{(a+b)^2} + 5$$

3) Cas général pour mettre sous la forme canonique un trinôme quelconque on met en facteur le coefficient du monôme de plus haut degré et on applique les méthodes précédentes.

a)
$$3x^2 + 4x - 7 =$$

$$3\left[x^{2} + \frac{4}{3}x - \frac{7}{3}\right] = 3\left[x^{2} + \frac{4}{3}x + \dots - \frac{7}{3}\right] = 3\left[\left(x + \frac{\dots}{\dots}\right)^{2} \dots \right]$$

b)
$$2x^2 + 4x - 9 = \dots$$