LTP Caucadis - Vitrolles

STT/BTS

Note Technique

Techniques Quantitatives de Gestion

Mathématiques Financières : l'essentiel

Les 10 formules incontournables (Fin de période)

Marc ROMANO 1998/99

Rappels d'algèbre

$$x^{-n} = \frac{1}{x^n}$$

$$\sqrt[n]{\mathbf{x}} = \mathbf{x}^{1/n}$$

Taux proportionnel – Taux équivalent

Taux Proportionnel

$$t = \frac{i}{n}$$

Exemple: taux mensuel **t** proportionnel à un taux annuel de 12% $t = \frac{12\%}{12 \text{ mois}} = 1\%$

Taux équivalent

$$(1+t)^{m} = (1+i)^{n}$$

$$\Rightarrow (1+t) = \sqrt[m]{(1+i)^{n}}$$

$$\Rightarrow (1+t) = (1+i)^{\frac{n}{m}}$$

Exemple : taux **t** mensuel équivalent à un taux **i** annuel de 12% $(1+t)=(1+0.12)^{\frac{1}{12}}=1,009488$ (ou 0.9488%)

Capitalisation - Actualisation

Valeur acquise Vn par un capital Vo placé pendant n périodes à un taux i

$$V_n = V_0 (1+i)^n$$
 (1)

Valeur acquise par un capital de 10.000 F placé pendant 5 ans au taux annuel de 7 % :

$$V_n = 10000 (1,07)^5 = 14025,52$$

Même calcul, mais intérêts composés trimestriellement.

Etape 1 : Détermination du taux trimestriel équivalent à 7% annuel

$$1 + t = 1,07\frac{1}{4} = 1,01706 \Rightarrow t = 1,706\%$$

Etape 2 : calcul de la valeur acquise d'un capital de 10000 F placé pendant 20 périodes (5 années de 4 trimestres) au taux de 1.706%

$$V_n = 10000 (1,01706)^{20} = 14025,52$$

On constate que, les taux étant équivalents, les valeurs futures sont strictement identiques, quelle que soit la période de composition choisie.

Valeur actuelle *Vo* (actualisation) d'une valeur future *Vn* actualisée sur *n* périodes à un taux *i*

$$V_0 = V_n (1+i)^{-n}$$
 (2)

Combien faudrait-il placer aujourd'hui, sur un livret de Caisse d'Epargne à 4% par an, pour disposer de 100.000 F dans 8 ans ?

$$V_0 = 100000 (1,04)^{-8} = 73.069,02$$

Emprunts indivis – Annuités (fin de période)

Valeur future *Vn* d'une suite d'annuités *a* placées au taux *i* pendant *n* périodes

$$V_n = a \frac{(1+i)^n - 1}{i}$$
 (3)

Quelle sera la valeur totale d'une série de versements de 500 F par mois, versés en fin de période pendant 8 ans au taux de 5,15% par an ?

Etape 1 : taux mensuel équivalent à 5,15% annuel

$$1 + t = 1,0515\frac{1}{12} = 1,00419 \Rightarrow t = 0,419\%$$

Etape 2 : calcul de la valeur future

$$V_n = 500 \frac{1,00419^{96} - 1}{0,00419} = 58939,64$$

Problème corollaire : montant de l'annuité a pour constituer un capital Vn

De la formule ci-dessus, on peut facilement déduire a en supposant Vn connu :

$$a = V_n \frac{i}{(1+i)^n - 1}$$
 (4)

Avec les mêmes données que l'exemple précédent (taux et durée), combien aurait-il fallu verser mensuellement pour obtenir un capital de 100.000 F au terme des 8 années ?

Le calcul est direct (nous connaissons déjà le taux mensuel équivalent).

$$a = 100000 \frac{0,00419}{1,00419^{96} - 1} = 848,33$$

Valeur actuelle d'une suite d'annuités constantes de fin de période

$$V_0 = a \frac{1 - (1+i)^{-n}}{i}$$
 (5)

Une assurance vie propose deux formules en cas de décès :

- Versement d'un capital unique de 500.000 F
- ♦ Versement d'une rente annuelle de 50.000 F pendant 12 ans En considérant un indice du coût de la vie de 2 % par an, laquelle des deux formules est la plus intéressante ?

Il faut calculer la valeur actuelle des 12 versements annuels de 50.000 F. en appliquant la formule d'actualisation des annuités constantes :

$$V_0 = 50000 \frac{1 - (1 + 0.02)^{-12}}{0.02} = 528.767,06$$

Il est donc beaucoup plus intéressant de choisir la rente annuelle pendant 12 ans (à condition que le bénéficiaire survive, lui).

Prenons le même problème, mais avec un taux d'inflation de 8 %. Le calcul d'actualisation donne dans ce cas une Vo de 376.803,90 F. On aura donc intérêt à préférer le versement immédiat.

Problème corollaire : montant de l'annuité a connaissant Vo, le taux et la durée (problème de l'annuité de remboursement de crédit).

$$a = V_0 \frac{i}{1 - (1 + i)^{-n}}$$
 (6)

Un ami vous demande de lui prêter 10.000 F, qu'il se propose de vous rembourser en 12 mensualités. Quel montant de mensualité devez-vous lui demander pour vous assurer un taux de 5 % ?

Calcul du taux proportionnel mensuel à 5 % annuel :

$$(1+0.05)^{\frac{1}{12}} = 1.00407$$

$$(1+0.05)^{\frac{1}{12}} = 1.00407$$
Calcul de l'annuité : $a = 10000 \frac{0.00407}{1 - (1+0.00407)^{-12}} = 855.54$

Calcul du premier amortissement d'un emprunt

Rappel: une annuité de remboursement (a) comprend une partie d'amortissement du capital emprunté (A) et une partie d'intérêts sur le capital.

$$A_1 = V_0 \frac{i}{(1+i)^n - 1}$$
 (7)

Soit un emprunt de 100.000 F remboursable en 10 annuités à 5 %, Calculez:

- 1. Le montant de l'annuité constante a
- 2. Le montant de l'amortissement A₁ compris dans la première annuité
- 3. Vérifiez que **a** A₁ (autrement dit, la part des intérêts compris dans la première annuité) est égal à 5 % du capital emprunté.

Calcul de l'annuité constante a

$$a = V_0 \frac{i}{1 - (1+i)^{-n}}$$
 soit
 $a = 100000 \frac{0,05}{1 - (1+0,05)^{-10}} = 12.950,46$

Calcul de la part en capital de la première annuité :

$$A_1 = 100000 \frac{i}{(1+0.05)^{10} - 1} = 7.950,46$$

Part des intérêts: 12.950,46 - 7.950,46 = 5.000,00 soit très exactement 5 % du capital emprunté, ce qui est normal : dans la première annuité, la totalité du capital produit des intérêts pendant toute la première période.

Calcul d'un amortissement connaissant le précédent ou le suivant

$$A_{p+1} = A_p (1+i) \qquad \Leftrightarrow \qquad A_p = \frac{A_{p+1}}{(1+i)}$$
 (8)

Dans le même exemple que ci-dessus, quel est la répartition entre capital et intérêt des 2^{ème}, 3^{ème} et 4^{ème} annuités ?

Connaissant A_1 , on applique la formule : $A_2=A_1(1+0,05)$, etc. Le montant des intérêts se déduit simplement en retranchant du montant de l'annuité l'amortissement du capital.

Annuité	Part en Capital	Intérêts
A2	8.347,98	4.602,48
A3	8.765,38	4.184,64
A4	9.203,65	3.748,81

Calcul du capital remboursé R_p après paiement de la p^{ème} annuité

$$R_p = A_1 \frac{(1+i)^p - 1}{i}$$
 (9)

Connaissant le calcul de A1 en fonction de Vo, il est possible de remplacer A1 par :

$$R_p = V_0 \frac{i}{(1+i)^n - 1} x \frac{(1+i)^p - 1}{i}$$

Cette formule peut être simplifiée, en éliminant i, et devient :

$$R_p = V_0 \frac{(1+i)^p - 1}{(1+i)^n - 1}$$
 (9bis)

Toujours dans l'exemple ci-dessus, calculez le montant du capital remboursé après paiement de la 3^{ème} échéance.

$$R_3 = 100000 \frac{(1+i)^3 - 1}{(1+i)^{10} - 1} = 25.063,83$$

Vérification : Nous avons calculé tout à l'heure le montant des amortissements en capital des 4 premières échéances. On peut donc vérifier que la somme des amortissements des trois premières échéances est bien égale au montant calculé :

$$7.950,46 + 8.347,98 + 8.765,38 = 25.063,82.$$

Compte tenu des arrondis successifs, l'écart d'1 centime n'est pas significatif.

Calcul du capital V_p restant à rembourser après paiement de la pème annuité

$$V_p = a \frac{1 - (1+i)^{-(n-k)}}{i}$$
 (10)

Toujours sur le même exemple, quel est le capital restant à rembourser après paiement de la 3^{ème} échéance ?

$$V_3 = 12.950,46 \frac{1 - (1 + 0.05)^{-(10-3)}}{0.05} = 74.936,20$$

Vérification : Nous avons calculé le capital remboursé et le capital restant à rembourser après la troisième échéance. La somme de ces deux chiffres doit logiquement être égale au capital initial :

74.936,20 + 25063,83 = 100.000,03

Les centimes d'écart sont dus aux arrondis. Ils se régularisent normalement sur la dernière échéance de l'emprunt.