LES INDICES

I. <u>Définitions et Propriétés</u>

1. Notion d'indice

Dans le domaine des sciences économiques et sociales, les grandeurs représentatives des phénomènes (prix, taux de chômage, ...) varient dans le temps et dans l'espace. Il est souvent difficile de les comparer.

Exemple:

La production d'un bien X passe de 30 000 à 36 000 alors que sur la même période la production d'un autre bien Y passe de 100 à 120.

La comparaison immédiate n'a pas beaucoup de sens, mais un calcul simple montre qu'en fait les 2 productions ont augmenté de 20% chacune.

Pour faciliter les comparaisons, on utilise souvent des rapports des grandeurs, ces rapports sont des nombres sans dimension.

Un indice c'est un rapport positif ou nul.

Soit V_O la valeur de ce phénomène à la date o et V_t la valeur de ce phénomène à la date t;

l'expression $I_{t/o} = \frac{Vt}{Vo}$ x 100 est l'indice de la valeur V à la date t, base 100 à la date o.

Exemple: la production du bien X passe de 10 à 15 de 2000 à 2001, de 15 à 18 de 2001 à 2002.

On peut former plusieurs indices:

• I
$$2001/2000 = \frac{15}{10} \times 100 = 150$$
 : la production a augmenté de 50% de 2000 à 2001

• I
$$2002/2001 = \frac{18}{15} \times 100 = 120$$
 : la production a augmenté de 20% de 2001 à 2002

• I
$$2002/2000 = \frac{18}{10} \times 100 = 180$$
 : la production a augmenté de 80% de 2000 à 2002.

On pourrait former d'autres indices comme I 2000/2001

Dans cet exemple il n'y a qu'une seule grandeur dont on étudie l'évolution, on parle alors d'indice élémentaire. S'il y a plusieurs grandeurs qui interviennent dans la valeur étudiée (Indice des prix INSEE par exemple) on parlera d'indice synthétique.

2. Indice élémentaire

Soit une grandeur dont les valeurs aux dates o et t sont notées V_0 et V_t , l'indice élémentaire de la valeur à la date t base 100 à date o s'écrit :

$$I_{t/o} = \frac{V_t}{V_o} \times 100$$

La date o est appelée "base", la date t "courante".

Propriétés:

• la "circularité" ou la "transférabilité":

$$I_{2/0} = I_{2/1} \times I_{1/0} \times \frac{1}{100}$$

On peut généraliser à plus de 2 dates; par exemples :

$$I_{5/0} = I_{5/4} \times I_{4/3} \times I_{3/2} \times I_{2/1} \times I_{1/0} \times \frac{1}{100^4}$$

• la "réversibilité" :

$$I_{O/t} = \frac{1}{I_{t/s}} - x \cdot 100^2$$

"Attention" : les taux de croissance ne sont pas réversible alors que indices oui.

Remarque : de façon évidente I $_{t/t}$ = 1 (ou 100)

• Soit une grandeur A produit de deux autres :
$$A = B \times C$$
 alors : $I(A) = I(B) \times I(C) \times \frac{1}{100}$ pour une période donnée (ou un lieu donné)

Exemple: soit R la recette totale lors de la vente d'un seul produit; en désignant par P son prix unitaire et Q la quantité vendue on a $R = P \times Q$

Si P passe de 20 à 22 DH et Q passe de 5000 à 6000 unités de la date o à la date t, alors on a :

$$I^{p}_{(t/o)} = 110$$
 et $I^{q}_{(t/o)} = 120$ et R passe de 100 000 DH à 132 000DH donc :

$$I^{R}(t/O) = 132 = I^{P} \times I^{Q} \times \frac{1}{100}$$

• On a une propriété identique pour une grandeur quotient de deux autres :

si A=
$$\frac{B}{C}$$
 alors $I(A) = \frac{I(B)}{I(C)} \times 100$

«Toute variation de valeur d'un bien se décompose en une variation du volume (de la quantité) et une variation du prix de ce bien.»

$$I^{V}_{(t/o)} = I^{P}_{(t/o)} \times I^{Q}_{(t/o)} \times \frac{1}{100}$$
.

II. Indices synthétiques

Les phénomènes économiques dont on cherche à apprécier les évolutions sont très souvent des agrégats de composants élémentaires.

Exemple : soit un casse-croûte composé de pain, fromage et vin avec les évolutions constatées

suivantes sur les prix des trois composants : . I
$Pain$
 (t/o) = 102 ; I Fromage (t/o) = 105 ; I Vin (t/o) =110

On peut définir un indice de prix du casse-croûte en prenant une moyenne pondérée des trois indices. (les coefficients de pondération pouvant être l'importance de chaque bien dans la composition du casse-croûte). On parle alors d'indice synthétique.

On aurait pu choisir une moyenne simple des trois indices mais le résultat n'aurait pas traduit correctement l'évolution de la valeur du casse-croûte.

Le choix des coefficients de pondération doit être fait au regard de l'objectif poursuivi.

• 1. Notion de Valeur Globale

Soit un panier de n biens dont les quantités et les prix évoluent de la date o à la date t. On désigne, aux dates o et t, les prix unitaires du bien n° = i par P_i (o) et P_i (t); de la même façon les quantités de ce même bien n° i par Q_i (o) et Q_i (t).

On a alors la valeur du panier à la date o qui est égale à : $V(o) = \sum_i P_i(0) \times Q_i(0)$ et cette

valeur à la date t qui est égale à : $V(t) = \sum_{i} P_i(t) \times Q_i(t)$

donc l'indice de valeur de ce panier base 100 à la date o :

$$I^{V}(t/o) = \frac{V(t)}{V(o)} \times 100 = \frac{\sum_{i} P_{i}(t) \times Q_{i}(t)}{\sum_{i} P_{i}(o) \times Q_{i}(o)} \times 100$$

Si I(V) > 100 la valeur du panier augmente mais qui en est la cause : les changements de prix de chaque bien ou les changements de quantité ?

De plus on a (cf I) pour chaque bien : $I^{vi}(t/o) = I^{pi}(t/o) \times I^{qi}(t/o) \times \frac{1}{100}$ en notant v_i la valeur du bien $n^{\circ}i$ ($v_i=p_i \times q_i$).

Peut-on fabriquer des indices synthétiques de prix et de quantités (ou de volume) pour que cette relation vraie pour chaque bien reste vraie pour la valeur globale du panier?

2. Indices de Laspeyres et Paasche

On remarque que:

$$V(t) = \sum_{i} P_{i}(t) \times Q_{i}(t) \times \frac{P_{i}(t) \times Q_{i}(t)}{P_{i}(0) \times Q_{i}(0)} = \sum_{i} v_{i}(0) \times I^{v_{i}}(t/0) \times \frac{1}{100}$$

$$= \sum_{i} v_{i}(0) \times I^{p_{i}}(t/0) \times I^{q_{i}}(t/0) \times \frac{1}{100^{2}}$$

$$d^{2}où: I^{V}(t/0) = \frac{V(t)}{V(0)} \times 100 = \sum_{i} \frac{v_{i}(0)}{V(0)} \times I^{p_{i}}(t/0) \times I^{q_{i}}(t/0) \times \frac{1}{100}$$

$$I^{V}(t/0) = \sum_{i} \frac{v_{i}(0)}{V(0)} \times I^{v_{i}}(t/0)$$

donc l'indice de valeur globale du panier est une moyenne pondérée des indices de valeur de chaque bien avec pour coefficients de pondération les rapports $\frac{vi(o)}{Vi(o)}$ qui représente la part du bien i (de sa valeur) dans la valeur globale du panier à la date o.

En posant pour l'indice des volumes (des quantités) $IQ(t/o) = \sum_{i} \frac{vi(o)}{Vi(o)} IQi(t/o)$

(formule semblable à celle de I^{V}), pour respecter $I^{valeur} = I^{prix} \times I^{quantité} \times \frac{1}{100}$

il faut poser :
$$\frac{1}{I^{P}(t/0)} = \sum_{i} \frac{v_{i}(t)}{V_{i}(t)} \times \frac{1}{I^{p_{i}}(t/0)}$$

c'est à dire une moyenne harmonique des indices élémentaires de prix, les coefficients de pondération étant les parts des biens dans la valeur globale du panier à la date t. L'indice des quantités précédent est l'indice de Laspeyres des quantités, noté:

$$L^{Q}(t/0) = \sum_{i} \frac{v_{i}(0)}{V(0)} \times I^{q_{i}}(t/0)$$

ou encore :
$$L^{Q}(t/0) = \frac{\sum_{i} P_{i}(0) \times Q_{i}(t)}{\sum_{i} P_{i}(0) \times Q_{i}(0)} \times 100$$

 $L^{\mathbb{Q}}(t/0)$ = moyenne arithmétique des indices élémentaires des quantités de chaque bien pondérés par la part du bien dans la consommation à la date o.

L'indice des prix défini ci-dessus est l'indice de Paasche des prix, noté: $P^P(t/O)$ est défini par :

$$\frac{1}{P^{P}(t/0)} = \sum_{i} \frac{v_{i}(t)}{V(t)} \times \frac{1}{I^{P_{i}}(t/0)}$$

ou encore:

$$P^{P}(t/0) = \frac{\sum_{i} P_{i}(t) \times Q_{i}(t)}{\sum_{i} P_{i}(0) \times Q_{i}(t)} \times 100$$

 $P^P(t/O)$ = moyenne harmonique des indices élémentaires des prix de chaque bien pondérés par la part du bien dans la consommation à la date t.

Remarque: les coefficients de pondération $\frac{vi}{V}$ s'appellent les coefficients budgétaires de la consommation.

On aurait pu faire le choix inverse c'est à dire définir les Laspeyres des prix et Paasche des quantités avec :

$$L^{P}(t/0) = \sum_{i} \frac{v_{i}(0)}{V(0)} \times I^{P_{i}}(t/0) = \frac{\sum_{i} P_{i}(t) \times Q_{i}(0)}{\sum_{i} P_{i}(0) \times Q_{i}(0)} \times 100$$
$$P^{Q}(t/0) = \frac{\sum_{i} P_{i}(t) \times Q_{i}(t)}{\sum_{i} P_{i}(t) \times Q_{i}(0)} \times 100$$

On a les relations fondamentales :

$$I^{\text{valeur}}(t/o) = L^{p}(t/o) \times P^{Q}(t/o) \times \frac{1}{100} = L^{Q}(t/o) \times P^{P}(t/o) \times \frac{1}{100}$$

Attention, les indices de Laspeyres et Paasche ne sont pas réversibles.

Remarque:

1). Un mathématicien américain Fischer a établi une troisième série d'indices qui ont la propriété de réversibilité en prenant les moyennes géométriques des Laspeyres et Paasche :

$$F^{p}(t/o) = \sqrt{L^{p}(t/0) \times P^{p}(t/0)}$$

$$F^{q}(t/0) = \sqrt{L^{Q}(t/0) \times P^{Q}(t/0)}$$

On a toujours $F^{\text{valeur}} = F^{\text{p}} \times F^{\text{q}} \times \frac{1}{100}$ mais l'interprétation des indices de Fischer n'est pas aisée.

- 2). Les indices de Laspeyres servent à la construction des indices de prix.
- 3). Il existe d'autres types d'indices synthétiques non présentés ici.