# A Toolbox for Pregroup Grammars Une boîte à outils pour développer et utiliser les grammaires de prégroupe 

Denis Béchet (Univ. Nantes \& LINA)

Annie Foret (Univ. Rennes 1 \& IRISA )

```
    Denis.Bechet@univ-nantes.fr
http://www.sciences.univ-nantes.fr/info/perso/permanents/bechet
    Annie.Foret@irisa.fr, http://www.irisa.fr/prive/foret
```


## Overview

- Grammatical formalism : pregroups
- A pregroup ToolBox : principles and illustrations

- Majority (partial) composition and parsing
- Grammar construction
- PPQ demo


## Grammatical Formalism

- Pregroup grammars (PG in short) [Lambek 99]:
- a simplification of Lambek Calculus [1958]
- used to describe the syntax of natural languages
- Extensions [LATA 2008]:
we have extended the pregroup calculus with two type constructors that PG are not able to naturally define:
-     * for iteration simple types
- ? for optional simple types and preserve nice properties of PG.


## Pregroup : definitions

A pregroup ( $T, \leq, \cdot, l, r, 1$ )
s. t. $(T, \leq, \cdot, 1)$ is a partially ordered monoid ${ }^{\text {a }}$
in which $l, r$ are unary operations on $T$ that satisfy:

$$
a^{l} \cdot a \leq 1 \leq a \cdot a^{l} \quad \text { and } \quad a \cdot a^{r} \leq 1 \leq a^{r} \cdot a \quad(P R E)
$$

or equivalently:

$$
a . b \leq c \Leftrightarrow a \leq c . b^{l} \Leftrightarrow b \leq a^{r} . c
$$

## Pregroup : definitions

A pregroup ( $T, \leq, \cdot, l, r, 1$ )
s. t. $(T, \leq, \cdot, 1)$ is a partially ordered monoid ${ }^{\text {a }}$
in which $l, r$ are unary operations on $T$ that satisfy:

$$
a^{l} \cdot a \leq 1 \leq a \cdot a^{l} \quad \text { and } \quad a \cdot a^{r} \leq 1 \leq a^{r} \cdot a \quad(P R E)
$$

or equivalently:

$$
\begin{gathered}
a . b \leq c \Leftrightarrow a \leq c . b^{l} \Leftrightarrow b \leq a^{r} . c \\
a^{r l}=a=a^{l r} \\
a^{r r} \neq a \neq a^{l l}
\end{gathered}
$$

Iterated adjoints: $\quad \ldots a^{(-2)}=a^{l l}, a^{(-1)}=a^{l}, a^{(0)}=a, a^{(1)}=a^{r}, a^{(2)}=a^{r r} \ldots$

## Pregroup : definitions

A pregroup ( $T, \leq, \cdot, l, r, 1$ )
s. t. $(T, \leq, \cdot, 1)$ is a partially ordered monoid ${ }^{\text {a }}$
in which $l, r$ are unary operations on $T$ that satisfy:

$$
a^{l} \cdot a \leq 1 \leq a \cdot a^{l} \quad \text { and } \quad a \cdot a^{r} \leq 1 \leq a^{r} \cdot a \quad(P R E)
$$

or equivalently:

$$
\begin{gathered}
a . b \leq c \Leftrightarrow a \leq c . b^{l} \Leftrightarrow b \leq a^{r} . c \\
a^{r l}=a=a^{l r} \\
a^{r r} \neq a \neq a^{l l}
\end{gathered}
$$

Some equations follow from the def.
but not, in general:
Iterated adjoints: $\quad \ldots a^{(-2)}=a^{l l}, a^{(-1)}=a^{l}, a^{(0)}=a, a^{(1)}=a^{r}, a^{(2)}=a^{r r} \ldots$
${ }^{a}$ A partially ordered monoid is a monoid $(M, \cdot, 1)$ with a partial order $\leq \mathrm{s} . \mathrm{t}$.
$\forall a, b, c: a \leq b \Rightarrow c \cdot a \leq c \cdot b$ and $a \cdot c \leq b \cdot c$.
${ }^{b}$ we also have:

$$
(a . b)^{r}=b^{r} \cdot a^{r}, \quad(a . b)^{l}=b^{l} \cdot a^{l}, \quad 1^{r}=1=1^{l}
$$

## Free pregroup

Let $(P, \leq)$ be an ordered set of atomic types,
Types $T_{(P, \leq)}=\left\{p_{1}^{\left(i_{1}\right)} \cdots p_{n}^{\left(i_{n}\right)} \mid 0 \leq k \leq n, p_{k} \in P\right.$ and $\left.i_{k} \in \mathbb{Z}\right\}$
the empty sequence is denoted by 1 .
For $X$ and $Y \in T_{(P, \leq)} X \leq Y$ iff this relation is deductible in the following system where $p, q \in P \quad n, k \in \mathbb{Z}$ and $X, Y, Z \in T_{(P, \leq)}$ :

$$
\begin{aligned}
& \frac{X \leq Y \quad Y \leq Z}{X \leq Z}(C u t) \\
& \frac{X Y \leq Z}{X q^{(n)} q^{(n+1)} Y \leq Z}\left(A_{L}\right) \quad \frac{X \leq Y Z}{X \leq Y q^{(n+1)} q^{(n)} Z}\left(A_{R}\right) \\
& \frac{X p^{(k)} Y \leq Z}{X q^{(k)} Y \leq Z}\left(I N D_{L}\right) \quad \frac{X \leq Y q^{(k)} Z}{X \leq Y p^{(k)} Z}\left(I N D_{R}\right) \\
& q \leq p \text { if } k \text { is even, and } p \leq q \text { if } k \text { is odd }
\end{aligned}
$$

## Pregroup grammar

Let $(P, \leq)$ be a finite partially ordered set.

- A pregroup grammar based on $(P, \leq)$ is a lexicalized ${ }^{a}$ grammar $G=(\Sigma, I, s)$ such that
- $s \in T_{(P, \leq)}$;
- $G$ assigns a type $X$ to a string $v_{1}, \ldots, v_{n}$ of $\Sigma^{*}$ iff for $1 \leq i \leq n, \exists X_{i} \in I\left(v_{i}\right)$ such that $X_{1} \cdots X_{n} \leq X$ in the free pregroup $T_{(P, \leq)}$.
- The language $\mathcal{L}(G)$ is the set of strings in $\Sigma^{*}$ that are assigned $s$ by $G$.
${ }^{\text {a a }}$ lexicalized grammar is a triple $(\Sigma, I, s): \Sigma$ is a finite alphabet, $I$ assigns a finite set of categories (or types) to each $c \in \Sigma, s$ is a category (or type) associated to correct sentences.


## Pregroup net

Our example is taken from Lambek, with the atomic types:

$$
\begin{aligned}
& \pi_{2}=\text { second person }, \\
& p_{2}=\text { past participle }, \\
& o=\text { object }, \\
& q=\text { yes-or-no question }, \\
& q^{\prime}=\text { question }
\end{aligned}
$$

This sentence gets type $q^{\prime}\left(q^{\prime} \leq s\right)$ :
whom have you seen
$\underline{q}^{\prime}{ }^{l l} q^{l} \quad q p_{2}^{l} \pi_{2}^{l} \quad \pi_{2} \quad p_{2} o^{l}$

## Pregroup net

Our example is taken from Lambek, with the atomic types:

```
\pi
p}=\mathrm{ past participle,
o = object,
q= yes-or-no question,
q}=\mp@code{question
```

This sentence gets type $q^{\prime}\left(q^{\prime} \leq s\right)$ :
whom have you seen


## Pregroup net

Our example is taken from Lambek, with the atomic types:

```
\pi
p2 = past participle,
o = object,
q= yes-or-no question,
q}=\mp@code{question
```

This sentence gets type $q^{\prime}\left(q^{\prime} \leq s\right)$ :
whom have you seen


## Pregroup net

Our example is taken from Lambek, with the atomic types:

```
\pi
p}=\mathrm{ past participle,
o = object,
q= yes-or-no question,
q}=\mp@code{question
```

This sentence gets type $q^{\prime}\left(q^{\prime} \leq s\right)$ :
whom have you seen


## Partial Composition

- [C] (partial composition ) : for $k \in \mathbb{N}$,

$$
\Gamma, X p_{1}^{\left(n_{1}\right)} \cdots p_{k}^{\left(n_{k}\right)}, q_{k}^{\left(n_{k}+1\right)} \cdots q_{1}^{\left(n_{1}+1\right)} Y, \Delta \xrightarrow{C} \Gamma, X Y, \Delta
$$

if $p_{i} \leq q_{i}$ and $n_{i}$ is even
or if $q_{i} \leq p_{i}$ and $n_{i}$ is odd, for $1 \leq i \leq k$.
Example :

$$
\Gamma,{\underset{\square}{q^{\prime} o^{l l} q^{l}, q p_{2}^{l} \pi_{2}^{l}}}^{[1]}, \Delta \xrightarrow{C} \Gamma, q^{\prime} o^{l l} p_{2}^{l} \pi_{2}^{l}, \Delta
$$

## Majority (Partial) Composition

A partial composition $\xrightarrow{C}$ is a majority partial composition
$(\stackrel{@}{\longrightarrow})$ if the width of the result is not greater than the maximum widths of the arguments

A partial composition that is not a majority composition :

$$
\Gamma,{q^{\prime} o^{l l} q^{l}, q p_{2}^{l} \pi_{2}^{l}}^{[1]}, \Delta \xrightarrow{C} \Gamma, q^{\prime} o^{l l} p_{2}^{l} \pi_{2}^{l}, \Delta
$$

A majority composition :

$$
\Gamma,{\stackrel{q^{\prime}}{q^{\prime} o^{l l} q^{l}, q o^{l} \pi_{2}^{l}}{ }^{[2]}, \Delta \xrightarrow{@} \Gamma, q^{\prime} \pi_{2}^{l}, \Delta}^{\square}
$$

## Parsing using Majority Composition

Parsing of "whom have you seen?"
$\left(q^{\prime} \leq s\right)$
whom have you seen
$q^{\prime} o^{l l} q^{l} \quad q p_{2}^{l} \pi_{2}^{l} \quad \pi_{2} \quad p_{2} o^{l}$


## Parsing algorithm in $n^{3}$

1. Types for words
whom $\mapsto\left\{q^{\prime} o^{l l} q^{l}\right\}$
have $\mapsto\left\{q p_{2}^{l} \pi_{2}^{l}\right\}$
you $\mapsto\left\{\pi_{2}\right\}$
seen $\mapsto\left\{p_{2} o^{l}\right\}$
2. Add types for words
with $\xrightarrow{G C O N C^{+}}$
3. Rec. Calculus of types per segment, with $\xrightarrow{@}$
4. Test wether the sentence has atomic type $s$ or $x \leq s$

## Parsing algorithm in $n^{3}$

1. Types for words
whom $\mapsto\left\{q^{\prime} o^{l l} q^{l}\right\}$
have $\mapsto\left\{q p_{2}^{l} \pi_{2}^{l}\right\}$
you $\mapsto\left\{\pi_{2}\right\}$
seen $\mapsto\left\{p_{2} o^{l}\right\}$
2. Add types for words
with $\xrightarrow{G C O N C^{+}}$
: nothing
3. Rec. Calculus of types per segment, with $\xrightarrow{@}$
4. Test wether the sentence has atomic type $s$ or $x \leq s$

## Parsing algorithm in $n^{3}$

1. Types for words $2 .+$ types to words with $\xrightarrow{G C O N C^{+}}$
2. Rec. Calculus of types per segment, with $\xrightarrow{@}$

- Length = 1: | whom | have | you | seen |
| :---: | :---: | :---: | :---: |
| $\left\{q^{\prime} o^{l l} q^{l}\right\}$ | $\left\{q p_{2}^{l} \pi_{2}^{l}\right\}$ | $\left\{\pi_{2}\right\}$ | $\left\{p_{2}{ }^{l}\right\}$ |
- Length = 2: | whom have | have you | you seen |
| :---: | :---: | :---: |
| $\emptyset$ | $\left\{q p_{2}^{l}\right\}$ | $\emptyset$ |
- Length = 3: | whom have you | have you seen |
| :---: | :---: |
| $\left\{q^{\prime} o^{l l} p_{2}^{l}\right\}$ | $\left\{q o^{l}\right\}$ |
- Length $=4:$| whom have you seen |
| :---: |
| $\left\{q^{\prime}\right.$ and $\left.q^{\prime} o^{l l} o^{l}\right\}$ |

4. Test wether the sentence has atomic type $s$ or $x \leq s$

## Parsing algorithm in $n^{3}$

1. Types for words $2 .+$ types to words with $\xrightarrow{G C O N C^{+}}$
2. Rec. Calculus of types per segment, with $\xrightarrow{@}$

- Length = 1: | whom | have | you | seen |
| :---: | :---: | :---: | :---: |
| $\left\{q^{\prime} o^{l l} q^{l}\right\}$ | $\left\{q p_{2}^{l} \pi_{2}^{l}\right\}$ | $\left\{\pi_{2}\right\}$ | $\left\{p_{2} o^{l}\right\}$ |
- Length = 2: | whom have | have you | you seen |
| :---: | :---: | :---: |
| $\emptyset$ | $\left\{q p_{2}^{l}\right\}$ | $\emptyset$ |
- Length $=3:$| whom have you | have you seen |
| :---: | :---: |
| $\left\{q^{\prime} o^{l l} p_{2}^{l}\right\}$ | $\left\{q o^{l}\right\}$ |
- Length $=4:$| whom have you seen |
| :---: |
| $\left\{q^{\prime}\right.$ and $\left.q^{\prime} o^{l l} o^{l}\right\}$ |

4. Test wether the sentence has atomic type $s$ or $x \leq s$ : $q^{\prime} \in \operatorname{and} q^{\prime} \leq s$

## PG with ? and * : proposal

Weakening

$$
\frac{X Y \leq Z}{X p^{*}{ }^{(2 k+1)} Y \leq Z}\left(*-W_{L}\right)
$$

$$
\frac{X \leq Y Z}{X \leq Y p^{*^{(2 k)}} Z}\left(*-W_{R}\right)
$$

Contraction

$$
\begin{array}{|cc}
\hline \frac{X p^{*^{(2 k+1)}} p^{(2 k+1)} Y \leq Z}{X p^{*(2 k+1)} Y \leq Z}\left(*-C_{L}\right) & \frac{X \leq Y p^{(2 k)} p^{*^{(2 k)}} Z}{X \leq Y p^{*^{(2 k)}} Z}\left(*-C_{R}\right) \\
\frac{X p^{(2 k+1)} p^{*^{(2 k+1)}} Y \leq Z}{X p^{*^{(2 k+1)}} Y \leq Z}\left(*-C_{L}^{\prime}\right) & \frac{X \leq Y p^{*^{(2 k)}} p^{(2 k)} Z}{X \leq Y p^{*^{(2 k)}} Z}\left(*-C_{R}^{\prime}\right)
\end{array}
$$

## PG with? and *: properties

- Property.[Optional and Iterated Basic Types] For $a$, a basic type:

$$
\begin{array}{cc} 
& a^{*} a \leq a^{*} \\
a \leq a^{?} & a a^{*} \leq a^{*} \\
1 \leq a^{?} & 1 \leq a^{*}
\end{array}
$$

- Theorem. The extended calculus defines a pregroup that extends the free pregroup based on $(P, \leq)$.
- Theorem.[The Cut Elimination] The cut rule can be eliminated in the extended calculus: every derivable inequality has a cut-free derivation.
- Property.[Decidability] The provability of $X \leq Y$ in this system is decidable


## PPQ - overview



## PPQ - grammar files

```
<?xml version="1.0" encoding="UTF-8"?>
<grammar>
    <pregroup>
    <order inf="n" sup="n-bar"/>
    </pregroup>
    <sentence type="s"/>
    <lexicon>
        <w><word>whom</word>
            <type><simple atom="q'"/>
                        <simple atom="O" exponent="-2"/>
                            <simple atom="q" exponent="-1"/>
            </type>
        </w>
    </lexicon>
</grammar>
Lefff 2.5.5: 534753 entries \(\Longrightarrow\) SQLite database lexicon.
```


## PPQ - majority composition

## The Matrix Content

| $\begin{array}{lll}  & \text { cell } & 1-4 \\ q^{\prime} & \end{array}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { cell } 1-3 \\ & q^{\prime} \quad 0^{l l} \quad \text { p_2 } \end{aligned}$ | $\text { cell 2-4 } q^{2} o^{l}$ |  |  |
| cell 1-2 | $\text { cell } 2-3$ | cell 3-4 |  |
| $\begin{array}{\|ll} \hline \text { cell } & 1-1 \\ q^{\prime} & o^{l l} \\ q^{l} \end{array}$ | $\text { cell } 2-2$ | $\begin{aligned} & \text { cell } 3-3 \\ & \pi \_2 \end{aligned}$ | $\begin{array}{lll} \text { cell } & 4-4 \\ p \_2 & o^{l} \end{array}$ |
| whom | have | you | seen |

## PPQ - net calculus


[FR: Now, when he took back her, he ought to enter]

PPQ can output an XML representation of nets if the result must be used by another program

## PPQ - net simplification



## becomes

Maintenant quand il $I^{\prime}$ avait ramenée il fallait qu' il entrât

[FR: Now, when he took back her, he ought to enter]

## Grammar construction

Diagram : construction of PG grammars (with or without "macro-types") and use of CAMELIS


## Grammar construction

Diagrams : around Lefff towards PG grammars (via "macro-types")


## Conclusion

Parser using majority composition - a tool for experiments:

- Learning Categorial Grammars (Learnability of Pregroup Grammars [Studia Logica 87(2/3) 2007])
- Allow parsing that follows a partial tree (XML input) and can label subparts of sentences (like named entities)
- To test different ideas, including :
- extensions of pregroups (*, ?) [LATA 2008]
- "long distant dependencies" [To appear 2009]
- different type assignment styles and languages
- pregroup net sorting and filtering
- ...

Small demo...

