
A Toolbox for Pregroup Grammars
Une boîte à outils pour développer et utiliser les

grammaires de prégroupe

Denis Béchet (Univ. Nantes & LINA)

Annie Foret (Univ. Rennes 1 & IRISA)

Denis.Bechet@univ-nantes.fr
http://www.sciences.univ-nantes.fr/info/perso/permanents/bechet

Annie.Foret@irisa.fr, http://www.irisa.fr/prive/foret

A Toolbox for Pregroup Grammars – p. 1/??

Overview

Grammatical formalism : pregroups

A pregroup ToolBox : principles and illustrations
↓

<grammar >
<pregroup >...
<phrase type="s"/>
<define >...
<w ><mot ...<macro...

PG grammar (.xml)

↓

Parser PPQ ← Raw sentence

← or XML sentence ...

↓
parse in XML,...

Majority (partial) composition and parsing

Grammar construction

PPQ demo

A Toolbox for Pregroup Grammars – p. 2/??

Grammatical Formalism

Pregroup grammars (PG in short) [Lambek 99]:
a simplification of Lambek Calculus [1958]
used to describe the syntax of natural languages

Extensions [LATA 2008]:
we have extended the pregroup calculus with two type
constructors that PG are not able to naturally define:

* for iteration simple types
? for optional simple types

and preserve nice properties of PG.

A Toolbox for Pregroup Grammars – p. 3/??

Pregroup : definitions

A pregroup (T,≤, ·, l, r, 1)

s. t. (T,≤, ·, 1) is a partially ordered monoid a

in which l, r are unary operations on T that satisfy:

al.a ≤ 1 ≤ a.al and a.ar ≤ 1 ≤ ar.a (PRE)

or equivalently: a.b ≤ c ⇔ a ≤ c.bl ⇔ b ≤ ar.c

A Toolbox for Pregroup Grammars – p. 4/??

Pregroup : definitions

A pregroup (T,≤, ·, l, r, 1)

s. t. (T,≤, ·, 1) is a partially ordered monoid a

in which l, r are unary operations on T that satisfy:

al.a ≤ 1 ≤ a.al and a.ar ≤ 1 ≤ ar.a (PRE)

or equivalently: a.b ≤ c ⇔ a ≤ c.bl ⇔ b ≤ ar.c

Some equations follow from the def. arl = a = alr b

but not, in general: arr 6= a 6= all

Iterated adjoints: . . . a(−2) =all, a(−1) =al, a(0) =a, a(1) =ar, a(2) =arr . . .

a

A Toolbox for Pregroup Grammars – p. 4/??

Pregroup : definitions

A pregroup (T,≤, ·, l, r, 1)

s. t. (T,≤, ·, 1) is a partially ordered monoid a

in which l, r are unary operations on T that satisfy:

al.a ≤ 1 ≤ a.al and a.ar ≤ 1 ≤ ar.a (PRE)

or equivalently: a.b ≤ c ⇔ a ≤ c.bl ⇔ b ≤ ar.c

Some equations follow from the def. arl = a = alr b

but not, in general: arr 6= a 6= all

Iterated adjoints: . . . a(−2) =all, a(−1) =al, a(0) =a, a(1) =ar, a(2) =arr . . .

aA partially ordered monoid is a monoid (M, ·, 1) with a partial order ≤ s. t.

∀a, b, c: a ≤ b ⇒ c · a ≤ c · b and a · c ≤ b · c.
bwe also have: (a.b)r = br.ar , (a.b)l = bl.al , 1r = 1 = 1l

A Toolbox for Pregroup Grammars – p. 4/??

Free pregroup

Let (P,≤) be an ordered set of atomic types,

Types T(P,≤) = {p
(i1)
1 · · · p

(in)
n | 0 ≤ k ≤ n, pk ∈ P and ik ∈ Z}

the empty sequence is denoted by 1.

For X and Y ∈ T(P,≤) X ≤ Y iff this relation is deductible in the following system

where p, q ∈ P n, k ∈ Z and X, Y, Z ∈ T(P,≤):

X ≤ X (Id)
X ≤ Y Y ≤ Z

(Cut)
X ≤ Z

XY ≤ Z
(AL)

Xq(n)q(n+1)Y ≤ Z

X ≤ Y Z
(AR)

X ≤ Y q(n+1)q(n)Z

Xp(k)Y ≤ Z
(INDL)

Xq(k)Y ≤ Z

X ≤ Y q(k)Z
(INDR)

X ≤ Y p(k)Z

q ≤ p if k is even, and p ≤ q if k is odd
A Toolbox for Pregroup Grammars – p. 5/??

Pregroup grammar
Let (P,≤) be a finite partially ordered set.

A pregroup grammar based on (P,≤) is a lexicalizeda

grammar G = (Σ, I, s) such that

s ∈ T(P,≤) ;

G assigns a type X to a string v1, . . . , vn of Σ∗ iff for
1 ≤ i ≤ n, ∃Xi ∈ I(vi) such that X1 · · ·Xn ≤ X in the
free pregroup T(P,≤).

The language L(G) is the set of strings in Σ∗ that are
assigned s by G.

aa lexicalized grammar is a triple (Σ, I, s): Σ is a finite alphabet, I assigns a

finite set of categories (or types) to each c ∈ Σ, s is a category (or type) associated

to correct sentences.

A Toolbox for Pregroup Grammars – p. 6/??

Pregroup net

Our example is taken from Lambek, with the atomic types:

π2 = second person,
p2 = past participle,
o = object,
q = yes-or-no question,
q′ = question q ≤ q′

This sentence gets type q′ (q′ ≤ s):
whom have you seen
q′ollql qpl

2π
l
2 π2 p2 ol

q′ ≤ s

A Toolbox for Pregroup Grammars – p. 7/??

Pregroup net

Our example is taken from Lambek, with the atomic types:

π2 = second person,
p2 = past participle,
o = object,
q = yes-or-no question,
q′ = question q ≤ q′

This sentence gets type q′ (q′ ≤ s):
whom have you seen
q′ollql qpl

2π
l
2 π2 p2 ol

A Toolbox for Pregroup Grammars – p. 7/??

Pregroup net

Our example is taken from Lambek, with the atomic types:

π2 = second person,
p2 = past participle,
o = object,
q = yes-or-no question,
q′ = question q ≤ q′

This sentence gets type q′ (q′ ≤ s):
whom have you seen
q′ollql qpl

2π
l
2 π2 p2 ol

A Toolbox for Pregroup Grammars – p. 7/??

Pregroup net

Our example is taken from Lambek, with the atomic types:

π2 = second person,
p2 = past participle,
o = object,
q = yes-or-no question,
q′ = question q ≤ q′

This sentence gets type q′ (q′ ≤ s):
whom have you seen

q′ollql qpl
2π

l
2 π2 p2 ol

A Toolbox for Pregroup Grammars – p. 7/??

Partial Composition

[C] (partial composition) : for k ∈ N,

Γ, Xp
(n1)
1 · · · p

(nk)
k , q

(nk+1)
k · · · q

(n1+1)
1 Y,∆

C
−→ Γ, XY,∆

if pi ≤ qi and ni is even
or if qi ≤ pi and ni is odd ,
for 1 ≤ i ≤ k.
Example :

Γ, q′ollql, qpl
2π

l
2

[1]
,∆

C
−→ Γ, q′ollpl

2π
l
2,∆

A Toolbox for Pregroup Grammars – p. 8/??

Majority (Partial) Composition
A partial composition C

−→ is a majority partial composition

(@
−→) if the width of the result is not greater than the

maximum widths of the arguments

A partial composition that is not a majority composition :

Γ, q′ollql, qpl
2π

l
2

[1]
,∆

C
−→ Γ, q′ollpl

2π
l
2,∆

A majority composition :

Γ, q′ollql, qolπl
2

[2]
,∆

@
−→ Γ, q′πl

2,∆

A Toolbox for Pregroup Grammars – p. 9/??

Parsing using Majority Composition

Parsing of “whom have you seen ?” (q′ ≤ s)

whom have you seen
q′ollql qpl

2π
l
2 π2 p2o

l

q′ollql, qpl
2π

l
2, π2

[1]
[1]

, p2o
l

[2]

A Toolbox for Pregroup Grammars – p. 10/??

Parsing algorithm in n3

1. Types for words
∣

∣

∣

∣

∣

∣

∣

∣

∣

whom 7→ {q′ollql}

have 7→ {qpl
2π

l
2}

you 7→ {π2}

seen 7→ {p2o
l}

2. Add types
for words

with GCONC+

−→

3. Rec. Calculus of types per segment, with @
−→

4. Test wether the sentence has atomic type s or x ≤ s

A Toolbox for Pregroup Grammars – p. 11/??

Parsing algorithm in n3

1. Types for words
∣

∣

∣

∣

∣

∣

∣

∣

∣

whom 7→ {q′ollql}

have 7→ {qpl
2π

l
2}

you 7→ {π2}

seen 7→ {p2o
l}

2. Add types
for words

with GCONC+

−→

: nothing

3. Rec. Calculus of types per segment, with @
−→

4. Test wether the sentence has atomic type s or x ≤ s

A Toolbox for Pregroup Grammars – p. 11/??

Parsing algorithm in n3

1. Types for words 2. + types to words with GCONC+

−→

3. Rec. Calculus of types per segment, with @
−→

Length = 1:
whom have you seen
{q′ollql} {qpl

2π
l
2} {π2} {p2o

l}

Length = 2:
whom have have you you seen

∅ {qpl
2} ∅

Length = 3:
whom have you have you seen

{q′ollpl
2} {qol}

Length = 4:
whom have you seen

{q′ and q′ollol}

4. Test wether the sentence has atomic type s or x ≤ s

A Toolbox for Pregroup Grammars – p. 11/??

Parsing algorithm in n3

1. Types for words 2. + types to words with GCONC+

−→

3. Rec. Calculus of types per segment, with @
−→

Length = 1:
whom have you seen
{q′ollql} {qpl

2π
l
2} {π2} {p2o

l}

Length = 2:
whom have have you you seen

∅ {qpl
2} ∅

Length = 3:
whom have you have you seen

{q′ollpl
2} {qol}

Length = 4:
whom have you seen

{q′ and q′ollol}

4. Test wether the sentence has atomic type s or x ≤ s :
q′ ∈ and q′ ≤ s

A Toolbox for Pregroup Grammars – p. 11/??

PG with ? and * : proposal

Weakening
XY ≤ Z

(∗ − WL)
Xp∗

(2k+1)

Y ≤ Z

X ≤ Y Z
(∗ − WR)

X ≤ Y p∗
(2k)

Z

Contraction

Xp∗
(2k+1)

p(2k+1)Y ≤ Z
(∗ − CL)

Xp∗
(2k+1)

Y ≤ Z

X ≤ Y p(2k)p∗
(2k)

Z
(∗ − CR)

X ≤ Y p∗
(2k)

Z

Xp(2k+1)p∗
(2k+1)

Y ≤ Z
(∗ − C ′

L)
Xp∗

(2k+1)

Y ≤ Z

X ≤ Y p∗
(2k)

p(2k)Z
(∗ − C ′

R)
X ≤ Y p∗

(2k)

Z

A Toolbox for Pregroup Grammars – p. 12/??

PG with ? and * : properties

Property.[Optional and Iterated Basic Types]
For a, a basic type:

a∗a ≤ a∗

a ≤ a? aa∗ ≤ a∗

1 ≤ a? 1 ≤ a∗

Theorem.The extended calculus defines a pregroup
that extends the free pregroup based on (P,≤).

Theorem.[The Cut Elimination] The cut rule can be
eliminated in the extended calculus: every derivable
inequality has a cut-free derivation.

Property.[Decidability]
The provability of X ≤ Y in this system is decidable

A Toolbox for Pregroup Grammars – p. 13/??

PPQ - overview

- - -

?

���

Input

form

Lexicon

loading

Type

assignment

Net

simplification

Result

reporting

Internal

reductions

Majority

composition

Net

calculus

A Toolbox for Pregroup Grammars – p. 14/??

PPQ - grammar files

<?xml version="1.0" encoding="UTF-8"?>

<grammar>

<pregroup>

<order inf="n" sup="n-bar"/>

...

</pregroup>

<sentence type="s"/>

<lexicon>

<w><word>whom</word>

<type><simple atom="q’"/>

<simple atom="o" exponent="-2"/>

<simple atom="q" exponent="-1"/>

</type>

</w>

...

</lexicon>

</grammar>

Lefff 2.5.5: 534753 entries =⇒ SQLite database lexicon.

A Toolbox for Pregroup Grammars – p. 15/??

PPQ - majority composition

Result of the Pregroup Parser
whom have you seen

Correct Sentence

There is one pregroup net

Pregroup Net 1

Word count 4 Axiom length (word unit * 2) 14
Entry count 4 Axiom length (entry unit * 2) 14
Axiom end point count 9 Interface height sum 7
Weakening level 0 Erased word count 0

The Matrix Content

cell 1(4
q'

cell 1(3
q' oll p_2l

cell 2(4
q ol

cell 1(2 cell 2(3
q p_2l

cell 3(4

cell 1(1
q' oll ql

cell 2(2
q p_2l π_2l

cell 3(3
π_2

cell 4(4
p_2 ol

whom have you seen

A Toolbox for Pregroup Grammars – p. 16/??

PPQ - net calculus

[FR: Now, when he took back her, he ought to enter]

PPQ can output an XML representation of nets if the result
must be used by another program

A Toolbox for Pregroup Grammars – p. 17/??

PPQ - net simplification

becomes

[FR: Now, when he took back her, he ought to enter]

A Toolbox for Pregroup Grammars – p. 18/??

Grammar construction
Diagram : construction of PG grammars (with or without "macro-types") and use of CAMELIS

<w><mot morph="">!</mot>
<macro name="poncts"/></w>
...
<w><mot morph="ms">abstrait</mot>
<macro name="adj"/></w>

Lexicon with "macros" (.xml)

⇓ (updates,...)

Complementary lexicon

⇓

<ordre
inf="n-hat"
sup="n"/>
...

order (.xml)

⇓ ⇓ ⇓

<define name="detM" ... >
chaineM="n.n^(-1).;" .../>
...

PG model for macro-types

= "define" as string (.xml)

↓

Translator xsl
Traduire-defM.xsl
Traduire-def.xsl

↓

<define name="detM" ... >
<type>
<simple atome="n" exposant="0"/>
<simple atome="n" exposant="-1"/>
...

PG types in xml : "define"

↓

XML2CTX/...

Traduire-def2ctx.xsl

↓
LIS context →

⇐

LIS context (file.ctx)

mk "!" cat is "poncts", ...

...

mk "abstrait" cat is "adj", detail is "ms" ...

⇐

LIS context (file.ctx)

mk "bras" type is "a", type is "n^r.n"

...

LIS
2X

M
L/..

.

XM
L2C

TX/..
.→

←

 →
 ←CAMELIS

glis-1.4-linux.exe
file.ctx

→←

<grammar >
<pregroup >...
<phrase type="s"/>
<define >...
<w ><mot ...<macro...

PG grammar (.xml)

↓

Parser PPQ ← Raw sentence

← or XML sentence ↵ (corpus or txt2xml.sed, ...)↓

parse in XML,...

Prototypes for languages

english ↑←

french ↑→

breton ↑→

Allows to define,

visualize, navigate

control,

query, update

LIS2XML/...

XML2CTX/...

→

←

A Toolbox for Pregroup Grammars – p. 19/??

Grammar construction
Diagrams : around Lefff towards PG grammars (via "macro-types")

→ LEFFF2CTX/

lefff2xml.sed
(renommer.sed)

→

<w><mot morph="">!</mot>
<macro name="poncts"/></w>
...
<w><mot morph="ms">abstrait</mot>
<macro name="adj"/></w>

Lexicon with "macros" (.xml)

⇓ (updates,...)

Complementary lexicon

⇓

<ordre
inf="n-hat"
sup="n"/>
...

order (.xml)

⇓ ⇓ ⇓

<define name="detM" ... >
chaineM="n.n^(-1).;" .../>
...

PG model for macro-types

= "define" as string (.xml)

↓

Translator xsl
Traduire-defM.xsl
Traduire-def.xsl

↓

<define name="detM" ... >
<type>
<simple atome="n" exposant="0"/>
<simple atome="n" exposant="-1"/>
...

PG types in xml : "define"

↓

XML2CTX/...

Traduire-def2ctx.xsl

↓
LIS context →

 →

LEFFF2CTX/

lefff2ctx.sed

 →

⇐

LIS context (file.ctx)

mk "!" cat is "poncts", ...

...

mk "abstrait" cat is "adj", detail is "ms" ...

LIS
2X

M
L/..

.

XM
L2C

TX/..
.→

←

 →
 ←

 → ←

CAMELIS

glis-1.4-linux.exe
file.ctx

Lefff

(Source)

<grammar >
<pregroup >...
<phrase type="s"/>
<define >...
<w ><mot ...<macro...

PG grammar (.xml)

↓

Parser PPQ ← Raw sentence

← or XML sentence ↵ (corpus or txt2xml.sed, ...)↓

parse in XML,...

LIS2XML/...

XML2CTX/...

→

←

A Toolbox for Pregroup Grammars – p. 20/??

Conclusion

Parser using majority composition – a tool for experiments:

Learning Categorial Grammars (Learnability of Pregroup
Grammars [Studia Logica 87(2/3) 2007])

Allow parsing that follows a partial tree (XML input) and
can label subparts of sentences (like named entities)

To test different ideas, including :
extensions of pregroups (*, ?) [LATA 2008]
“long distant dependencies” [To appear 2009]
different type assignment styles and languages
pregroup net sorting and filtering
...

Small demo...
A Toolbox for Pregroup Grammars – p. 21/??

	Overview
	Grammatical Formalism
	Pregroup : definitions
	Pregroup : definitions
	Pregroup : definitions

	Free pregroup
	Pregroup grammar
	Pregroup net
	Pregroup net
	Pregroup net
	Pregroup net

	Partial Composition
	Majority (Partial) Composition
	Parsing using Majority Composition
	Parsing algorithm in n^3
	Parsing algorithm in n^3
	Parsing algorithm in n^3
	Parsing algorithm in n^3

	PG with ? and * : proposal
	PG with ? and * : properties
	PPQ - overview
	PPQ - grammar files
	PPQ - majority composition
	PPQ - net calculus
	PPQ - net simplification
	Grammar construction
	Grammar construction
	Conclusion

