MATHEMATIQUES APPLIQUEES

EQUATIONS DU SECOND DEGRE

 $ax^2 + bx + c = 0$

$$ax^2 + bx + c = 0$$

Delta =
$$b^2 + (4*a*c)$$

si Delta > 0
$$x' = (-b - Racine carrée (Delta)) / (2*a)$$

 $x'' = (-b + Racine carrée (Delta)) / (2*a)$

si Delta = 0
$$x' = x'' = -b / (2*a)$$

$$ax^2 + bx + c = 0.$$

Définition du discriminant — Le discriminant de l'équation est la valeur ∆ définie par :

$$\Delta = b^2 - 4ac.$$

Si le discriminant est strictement positif, l'équation admet deux solutions x₁ et x₂

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$.

Si le discriminant est nul, l'équation admet une racine double :

$$ax^{2} + bx + c = a\left(x + \frac{b}{2a}\right)^{2}$$
 et $x_{1} = x_{2} = -\frac{b}{2a}$.

Si le discriminant est strictement négatif, l'équation n'admet pas de solution réelle.

CALCUL D'ANGLES

Angle = arc tangente (sin x / cos x)

sin x = hauteur (ordonnée) cos x = longueur (abscisse)

Angle = arc tangente (hauteur / longueur)

exemple : hauteur = 150 m de dénivelé

longueur = 1 km

Angle = 8,5 degrés

NOMBRE D'OR

0,618

Nbre Or = (Racine(5) - 1) / 2

GRANDEURS

Longueur	L	mètre
Masse	M	kg masse
Temps	T	seconde
Intensité du courant	A	ampère

Surface	L^2	m²
Volume	13	m3
Vitesse	L * (T-1)	m/s
Acceleration	L * (T-2)	m/s par seconde

Force
$$M*L*(T-2)$$
 newton

Energie	$M*L^2*(T-2)$	joule	
Puissance	$M*L^{2*}(T-3)$	watt	1W = 3600 joules
Pression	M*I - 1*(T-2)	pascal	

Pression
$$M*L-1*(T-2)$$
 pasca
Differentiel de tension $M*L2*(T-3)*A-1$ volt
Resistance electrique $M*L2*(T-3)*A-2$ ohm

L'intensité = ampère = watt / volt

ENERGIE CINETIQUE

$$E = (1/2) * m * v^2$$

m = masse

v = vitesse

LA CHUTE LIBRE

Loi des espaces

Hauteur = $(1/2) * G * (T^2)$ en mètres

 $G = gravitation soit 9,81 \text{ m/s}^2$

T = temps en secondes

Loi des vitesses

Vitesse = G * T

L'acceleration dérivée de la vitesse, elle est constante elle est égale à G soit 9,81 m/s²

LEVIER

$$P = (R * D) / L$$

P = puissance en kilos à appliquer sur le levier

R = poids à soulever en kilos

D = distance entre le matériau à soulever et le point d'appui du levier (m

L = distance entre le point d'appui et l'extréminité du levier (m)

exemple:

P est égal à 40 kg

$$\mathbf{R} = (\mathbf{P} * \mathbf{L}) / \mathbf{D}$$

donne le plus grand poids soulevable pour une puissance donnée

kg

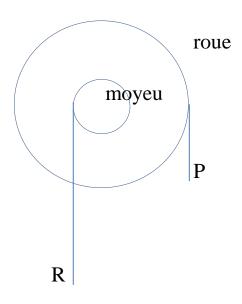
exemple:

P	80	kg
D	2	m
L	5	m
P est égal à		200

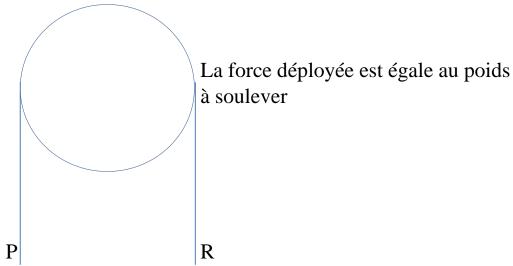
TRAVAIL AVEC ROUE

$$\mathbf{P} = (\mathbf{R} * \mathbf{D}) / \mathbf{L}$$

P = puissance en kilos à appliquer sur le levier


R = poids à soulever en kilos

D = rayon du moyeu (m)


L = rayon de la roue (m)

exemple: R 100 kg D 0,1 m L 0,5 m

P est égal à 20 kg

POULIE

Dans le cas d'un mouflage de N poulies, la force déployée sera de :

$$P = R / N$$

et pour soulever le poids de 1 mètre il faudra haler :

N mètres de cordes

SURFACES

Carré coté puissance 2

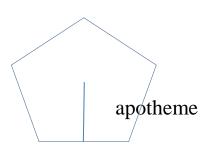
Rectangle longueur * largeur

Triangle rectangle (longueur * hauteur) / 2

Triangle isocèle (longueur * hauteur) / 2

Parallèlogramme longueur * hauteur

Losange (grande diagonale * petite diagonale) / 2


Trapèze [(grande base + petite base) / 2] * hauteur

Triangle equilateral (coté * racine de 3) / 4

Pentagone perimetre * (apotheme / 2)

Hexagone idem
Heptagone idem
Octogone idem

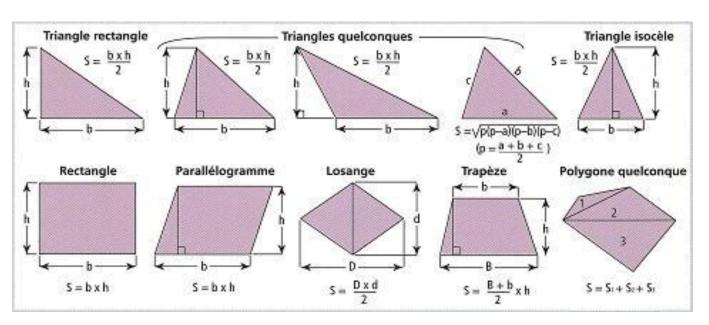
Cercle Pi * Rayon ²
Cercle perimetre 2 * Pi * Rayon

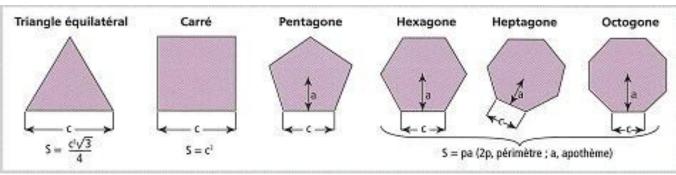
VOLUMES

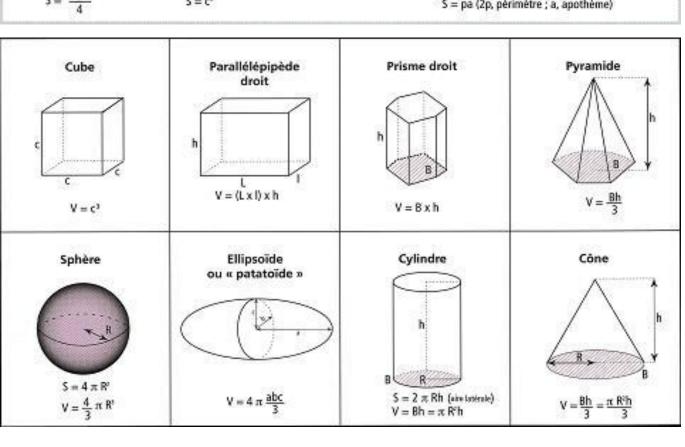
Cube coté puissance 3

Parallélépipède longueur * largeur * hauteur

Sphère (1/6) * Pi * (diametre puissance 3)

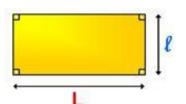

Cylindre Pi * Rayon² * hauteur $V = \pi \times R^2 \times h$

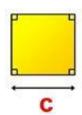

Pyramide à base carrée (coté du carré ² * hauteur)/3


Volume de la pyramide base carrée = $\frac{A \times h}{3}$

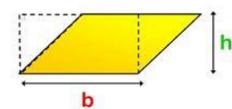
avec A = aire de la base = c x c = c2

h a e	parallélépipède	abc sin α	Somme des aires des parallélogrammes latéraux
	cylindre oblique	Ah = Al sin α	$pl = \frac{ph}{\sin \alpha}$
	cylindre circulaire oblique	π r²h = π r²l sin α	$2\pi rl = \frac{2\pi rh}{\sin \alpha}$
h. b	tronc de cône circulaire droit	$\frac{\pi h(a^2 + ab + b^2)}{3}$	$\pi(a + b) $ ou $\pi(a + b)\sqrt{h^2 + (b - a)^2}$
Ţ h	calotte sphérique	πh²(3r – h) 3 où r est le rayon de la sphère	2πrh
(ar)	tore ou « chambre à air »	2π²aR²	4 π²aR

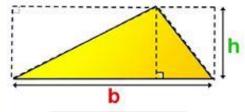


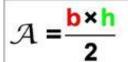

AIRES

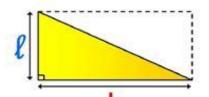
RECTANGLE


$$A = L \times \ell$$

CARRE

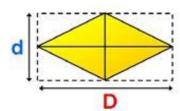

$$\mathcal{A} = \mathbf{c} \times \mathbf{c} = \mathbf{c}^2$$

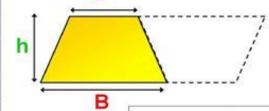

PARALLELOGRAMME



$$A = b \times h$$

TRIANGLES




 $\mathcal{A} = \frac{\mathsf{L} \times \ell}{2}$

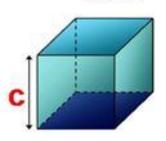
LOSANGE

 $\mathcal{A} = \frac{\mathsf{D} \times \mathsf{d}}{2}$

b TRAPEZE

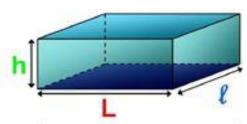
 $\mathcal{A} = \frac{\left(\mathbf{B} + \mathbf{b}\right) \times \mathbf{h}}{2}$

CERCLE - DISQUE

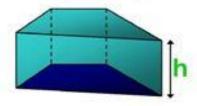


$$\mathcal{P} = 2\pi r$$

$$\mathcal{A} = \pi r^2$$


VOLUMES

CUBE


$$V = \mathbf{c} \times \mathbf{c} \times \mathbf{c} = \mathbf{c}^3$$

PARALLELEPIPEDE RECTANGLE

$$\mathcal{V}=\mathbf{L}\times\boldsymbol{\ell}\times\mathbf{h}$$

PRISME DROIT


CYLINDRE DE REVOLUTION

$$V = A_{\text{Base}} \times h$$

PYRAMIDE

$$\mathcal{V} = \frac{\mathcal{A}_{\text{Base}} \times \mathbf{h}}{\mathbf{3}}$$

SPHERE-BOULE

$$\mathcal{A} = 4\pi r^2$$

$$\mathcal{V} = \frac{4}{3}\pi r^3$$

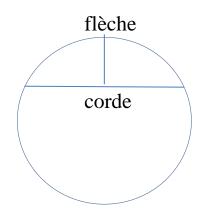
HAUTEUR D'UN ARBRE

Couper une baguette de 1 m de hauteur

Planter la baguette et noter la longueur de son ombre = L

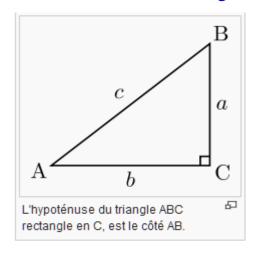
Rapporter cette longueur L à la longueur de la baguette ex : L=1,2 soit C=1,2

Mesurer la longueur de l'ombre de l'arbre = N exemple : 15 mètres


Hauteur de l'arbre = N / C soit 15 / 1,2 = 12,5 mètres

CALCUL DU RAYON DEPUIS UN ARC DE CERCLE

$$((C/2)^2 + F^2)/2*F$$


C = longueur de la corde

F = flèche

HYPOTHENUSE D'UN TRIANGLE RECTANGLE

H = Racine carrée (longueur² + largeur²)

