The Be Binary Dschubba and Its 2011 Periastron Passage

Anatoly Miroshnichenko

University of North Carolina at Greensboro USA

In collaboration with:

Professionals

Alexei Pasechnik (Tuorla, Finland)

Alex Carciofi (Sao Paulo, Brazil)

Nadine Manset (CFHT)

Thomas Rivinius, Stan Štefl (ESO)

Vasilij Gvaramadze (Moscow, Russia) Ernst Pollmann (Germany)

John Martin (U. South. Illinois)

Sergey Zharikov (UNAM, Mexico)

Atsuo Okazaki (Japan)

Johan Knappen (IAC, Spain)

Amateurs

Jose Ribeiro (Portugal)

Alberto Fernando (Portugal)

Thierry Garrel (France)

Christian Buil (France)

Bernard Heathcote (Australia)

Olivier Thizy (France)

Thom Gandet (USA)

Outline

- Parameters of the δ Sco binary
- The primary's disk during the last orbital cycle
- Spectroscopy during the periastron 2011
- What kind of system is δ Sco?
- Conclusions

Parameters of δ Sco

Optical brightness without disk, V=2.32 mag Spectral type B0.3 IV Distance, D = 123 ± 15 pc Luminosity, log L/L \odot = 4.4 ± 0.1 Surface temperature. Teff = 27500 ± 500 K

Surface temperature, Teff = 27500 ± 500 K Surface gravity, log g = 4.0 (typical of a dwarf)

Binary system with an angular separation from 0."2 (apastron) to 0." 006 (periastron) Orbital period, P = 10.8 years Eccentricity, $e = 0.94\pm0.01$ Secondary, $\Delta V \sim 1.7$ mag, Sp.T. $\sim B3$ (uncertain)

δ Sco in the HRD

δ Sco without Disk

When did the Emission Appear?

Koubsky 2005, Astrophys. & Space Science, 296, 165

Orbit of 8 Sco

Bisector radial velocities of the H α emission line near periastron in 2000

Add 10.8 years

Brightness - Spectrum

Disk in 2001

Disk in 2001

From Carciofi et al. (2006, ApJ, 652, 1617)

Goals of the 2011 Campaign

Take spectra as frequently as possible to:

- obtain a well-defined radial velocity curve to independently constrain the orbital period
- study line profile variations to search for effects of the tidal interaction on the disk and possibly get some information about the secondary component

Numbers of spectra obtained:

Year	Professionals		Amateurs	
	spectra	nights	spectra	nights
2000	30	30	2	2
2010	~200	30	~200	83
2011	~300	40	~300	149

Ha line in 2000 and 2010/11

He II 4686 Å Region

http://www.uncg.edu/~a_mirosh/Delta_Sco

The IAC80 Periastron Campaign

RV Curves at Periastron 2011

Periastron in Ha

Ha Profile at Periastron

Periastron in He II 4686 Å

Black dots are data from 2000

Secondary's Trace at Periastron

Radial velocity difference is ~120 km/s

B0 + B3, both v sin i = 150 km/s, brightness ratio $\Delta V = 1.7$ mag

Observed He I 4471

What Is δ Sco?

- The Bright Star Catalog mentions a component with a 20-day orbital period
- Most Be binaries with non-degenerate secondary components have circular orbits.
- Radial velocities in the XX century show variations additional to those expected at periastra.
- Be/X-ray binaries have eccentric orbits.
- The system is surrounded by a dusty envelope seen that could have resulted from an explosion.

Hypotheses:

- ✓ There is a third, degenerate(?) star in the system
- **✓** The binary is a runaway from a cluster

Historical Radial Velocity Data

Periodogram and stability analysis by A. Pasechnik:

- Periods shorter than ~10.5 years are insignificant
- Any internal component is unstable after few orbits
- Orbital period may change due to an external component

The Shell of 8 Sco

WISE images at 22 (left) and 12 (right) microns (found by Vasilij Gvaramadze, Sternberg Inst., Moscow, Russia)

Conclusions

- Orbital period is $10.8147\pm0.0013 \text{ yr} = 3950\pm5 \text{ d}$
- Spectroscopy near periastron did not clearly reveal properties of the secondary that is consistent with an early— to mid—B spectral type
- The IR shell near the system suggests that it is a runaway from a young cluster
- The radial velocity in 2011 curve slightly deviates from that in 2000 (possible 3rd component)
- The 2011 campaign reveal that amateur spectroscopy becomes an important factor in astronomy of emission-line stars