Licence 1- Semestre 1 2011-2012

Christophe Morin

Claire Lacombe

Mail: ch.morin@u-pec.fr

Licence 1- Semestre 1

Introduction

Définition:

vivants »

«L'étude des substances et des réactions chimiques des organismes (Le petit Larousse)

Etude de leurs structures ou conformations: L'étude de la transformation de ces molécules par - Glucides des réactions chimiques au niveau cellulaire: 1^{er} semestre - Lipides -les réactions de dégradation ou de catabolisme (but exemple: fournir de l'énergie) -les réactions de biosynthèse ou anabolisme - Acides Aminés – Protéines 2^{ème} semestre (but exemple: fournir des composés nécessaires) - Acides nucléiques – ADN Enzymologie Licence 1 Licence 2/Licence 3

Licence 1- Semestre 1

• Plan:

- Introduction
- Les liaisons et fonctions chimiques
- Cas de l'eau H₂O
- Les techniques utilisées en Biochimie
- Les glucides
- Les lipides et membranes

Licence 1- Semestre 1

Introduction

Les organismes vivants sont caractérisés par 4 grandes familles de molécules:

_

-

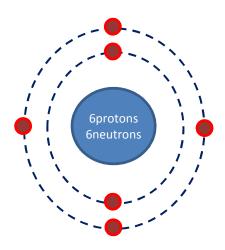
_

Constituées elles-mêmes par petit nombre d'éléments chimiques:

Elément	Etres humains	Plantes vertes	Bactéries
Oxygène	62.8	77.8	73.7
Carbone	19.3	11.3	12.1
Hydrogène	9.3	8.7	9.9
Azote	5.1	0.8	3.0
Phosphore	0.6	0.7	0.6
Soufre	0.6	0.1	0.3

Licence 1- Semestre 1

Introduction


La matière vivante est constitué à environ 95% de :

_

-

_

Et les organismes vivants sont constitués de 60% à 95% d'eau

Licence 1- Semestre 1

Introduction

Le Carbone s'associe alors avec l'H, l'O et/ou l'N pour former les molécules biologiques.

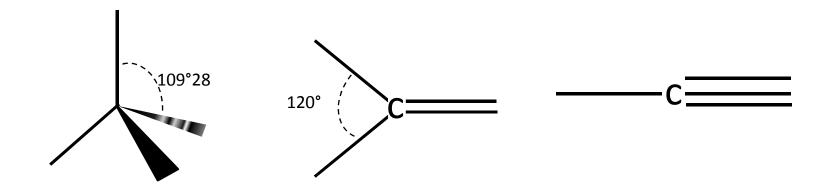
Petits atomes avec un faible numéro atomique Z (1, 6, 7 et 8)

Cherchent à stabiliser leur couche externe (règle de l'octet) en établissant une/des liaisons avec d'autres atomes:

H: 1 électron pour compléter sa couche 1s

O: 2 électrons pour compléter sa couche 2p

N: 3 électrons pour compléter sa couche 2p

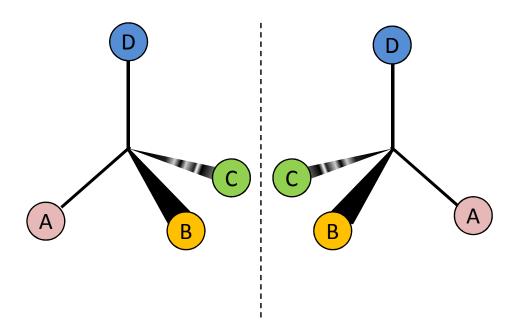

C: 4 électrons pour compléter sa couche 2p.

Licence 1- Semestre 1

Introduction

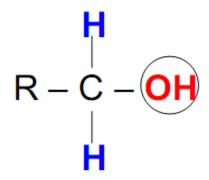
Le Carbone peut être considéré comme le squelette de la molécule

En fait de partager ses 4 électrons de sa dernière couche électronique

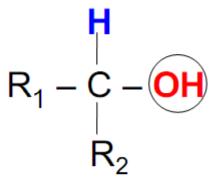


Licence 1- Semestre 1

Introduction


-Lorsque les 4 substituants sont différents,.

-il peut exister sous 2 formes isomères l'une de l'autre: des énantiomères.



Licence 1- Semestre 1

- I. Liaisons et fonctions chimiques
 - A. Principales fonction rencontrées en Biochimie
 - 1. <u>Fonction alcool</u>

Alcool primaire (alcool I)

Alcool secondaire (alcool II)

Licence 1- Semestre 1

- I. Liaisons et fonctions chimiques
 - A. Principales fonction rencontrées en Biochimie
 - 1. <u>Fonction alcool</u>

L'oxydation des alcools est effectué en plusieurs étapes dans les organismes vivants

$$R - CH_2OH \xrightarrow{-H_2} R - CHO \xrightarrow{+H_2O} R - CH \xrightarrow{OH} \xrightarrow{-H_2} R - CHO \xrightarrow{-H_2} R - CHO \xrightarrow{OH} R - CHOOH$$

$$R - CHOH - R' \xrightarrow{-H_2} R - C - R'$$

Licence 1- Semestre 1

I. Liaisons et fonctions chimiques

- A. Principales fonction rencontrées en Biochimie
 - 1. <u>Fonction alcool</u>

La fonction ester
$$R-C$$
 $O-R$
 $HO-CH_2$
 $HO-CH$
 $HO-CH_2$

Formation d'ester à partir d'un alcool et d'un acide carboxylique par élimination d'une molécule d'eau

exemple: les glycérides

Licence 1- Semestre 1

- I. Liaisons et fonctions chimiques
 - A. Principales fonction rencontrées en Biochimie
 - 1. <u>Fonction alcool</u>

La condensation de deux fonctions alcool conduit à la formation d'un **Ether** et à la libération d'une molécule d'eau

$$R - OH + HO - R'$$
 H_2O

Licence 1- Semestre 1

- I. Liaisons et fonctions chimiques
 - A. Principales fonction rencontrées en Biochimie
 - 2. Fonctions aldéhyde et cétone

aldéhyde: cétone:

Licence 1- Semestre 1

Liaisons et fonctions chimiques

- A. Principales fonction rencontrées en Biochimie
 - Fonctions aldéhyde et cétone

Oxydation

$$R - CHO \xrightarrow{+H_2O} \left(R - CH \xrightarrow{OH} \xrightarrow{-H_2} - CH \xrightarrow{OH} \right)$$

aldéhyde acétal instable acide carboxylique

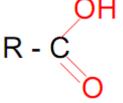
Réduction

$$R - C - R' \longrightarrow R - CHOH - R'$$
O
cétone alcool secondaire

Licence 1- Semestre 1

I. Liaisons et fonctions chimiques

- A. Principales fonction rencontrées en Biochimie
 - 2. Fonctions aldéhyde et cétone


Formation d'un hémiacétal

$$R \longrightarrow C \longrightarrow R \longrightarrow R \longrightarrow R \longrightarrow R \longrightarrow R'$$

Licence 1- Semestre 1

I. Liaisons et fonctions chimiques

- A. Principales fonction rencontrées en Biochimie
 - 3. Fonctions acides: acide carboxylique

- ionisation

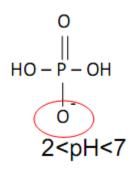
$$R - COOH + H_2O \longrightarrow R - COO^- + H_3O^+$$

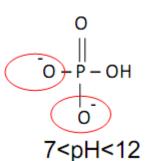
acide base conjuguée
pH pK

- formation d'ester avec un alcool (déjà vu)
- formation d'amide avec une amine :

$$R - NH_2 + HOOC - R' \longrightarrow R - NH - CO - R' + H_2O$$


- Formation d'anhydride d'acide entre 2 acides


$$R - COOH + HOOC - R' \longrightarrow R - CO - O - CO - R' + H_2O$$


Licence 1- Semestre 1

- I. Liaisons et fonctions chimiques
 - A. Principales fonction rencontrées en Biochimie
 - 4. Fonctions acides: acide phosphorique

$$\begin{array}{c} O \\ | & pK_1 \cong 12 \\ \mathsf{P}-\mathsf{OH} \\ \mathsf{pK}_2 \cong 7 \\ \mathsf{OH} \\ \mathsf{pK}_3 \cong 2 \end{array}$$

Licence 1- Semestre 1

- I. Liaisons et fonctions chimiques
 - A. Principales fonction rencontrées en Biochimie
 - 4. Fonctions acides: acide phosphorique
 - formation d'amide avec une amine

- formation d'anhydride d'acide

exemple: l'adénosine triphosphate (ATP)

Licence 1- Semestre 1

- I. Liaisons et fonctions chimiques
 - A. Principales fonction rencontrées en Biochimie
 - 4. Fonctions acides: acide phosphorique
 - formation d'ester phosphorique avec un alcool (phospholipides, acides nucléiques)

Licence 1- Semestre 1

- I. Liaisons et fonctions chimiques
 - A. Principales fonction rencontrées en Biochimie
 - 5. Fonctions amines

$$\frac{R_1}{R_2}$$
CH – $\frac{NH_2}{R_2}$

$$\frac{R_1}{R_2}CH - N_{R_3}^H$$

- ionisation

$$R' CH - NH_2 + H_3O^+ \longrightarrow R' CH - NH_3^+ + H_2O$$

Licence 1- Semestre 1

- I. Liaisons et fonctions chimiques
 - A. Principales fonction rencontrées en Biochimie
 - Fonction amine
 - oxydation (conduit à une imine instable qui, ellemême, donne une cétone)

$$\begin{array}{c} R' \\ R' \\ CH - NH_2 \\ \hline \\ amine \\ \end{array}$$
 (imine instable)

- formation d'amide avec un acide carboxylique (déjà vu)

Liaison peptidique

Licence 1- Semestre 1

I. Liaisons et fonctions chimiques

- A. Principales fonction rencontrées en Biochimie
 - Fonction Thiol

$$R - CH_2 - SH$$

Acide Aminé: cystéine

-Formation de **pont disulfure** entre 2 cystéines

$$R - SH + R' - SH \longrightarrow R - S - S - R'$$

-Oxydation en Acide sulfonique

$$R - SH \longrightarrow R - SO_3H$$

thiol acide sulfonique

- Formation de **thioester** avec un acide (mode d'activation indispensable lors du métabolisme des acides gras)

$$R - (CH_2)_n - COOH + HS - CoA \longrightarrow R - (CH_2)_n - CO - SCoA$$