Ontogénèse des comportements de prédation
et rôle de l’expérience alimentaire précoce
chez Mustela putorius

par T. LODÉ

Laboratoire d’Ethologie, Université de Rennes 1, 35042 Rennes Cedex

Summary. — The apparition of predatory behaviour in Mustela putorius goes on progressively and begins before opening eyes with supply of solid food by female. The observation of evolution of behaviours shows the importance of social interactions within litter. The adult takes an active part in the initiation of young polecats behaviours. The comparison in-natura between the diets discloses that the female makes a real selection of preys meant for young polecats. Great modifications of female predatory behaviour are noted, and mainly an inhibition of kill behaviour. However, the nourrishment by female does not seem to induce great dependance in food choice of young polecats.

Résumé. — L’apparition du comportement de prédation chez Mustela putorius se déroule progressivement et débute avant l’ouverture des yeux avec l’apport de nourriture solide par la mère. Ensuite, les jeunes se déplacent activement et transporteront la proie tuée par la femelle. Enfin, les proies sont mordillées et mises à mort. L’observation des comportements montre l’importance des interactions sociales au sein de la portée. L’adulte prend une part active à l’initiation des comportements. L’étude comparée des régimes alimentaires de la mère et des jeunes dans la nature révèle que la mère opère une sélection réelle des proies destinées aux jeunes. Parallèlement, il existe d’importantes modifications du comportement de prédation chez la femelle et notamment une inhibition des comportements de mise à mort. Cependant, le nourrissage maternel ne semble pas induire par la suite une importante dépendance des choix alimentaires des jeunes.

INTRODUCTION

Cette étude se propose, premièrement de décrire l'évolution et la mise en place des comportements alimentaires, deuxièmement d'évaluer de quelle nature peut être le rôle de la mère dans l'acquisition des comportements de prédation.

MATÉRIEL ET MÉTHODE

Nos premières observations ont été effectuées dans le cadre d'une recherche menée depuis 1984 dans l'ouest de la France à partir d'individus reproducteurs capturés par nous-mêmes en Loire-Atlantique, ou mis à disposition par la Garde- rie des Fédérations de Chasseurs de Maine-et-Loire et de Loire-Atlantique.

Les animaux sont détenus dans les enclos de 12 à 16 m² aménagés, et les gîtes sont protégés en permanence par un rideau sombre. Cette installation semble réunir les conditions de quiétude optimale. Les observations ont été réalisées, sur deux portées de six et cinq putois nés en captivité durant l'année 1988. La première portée se compose de trois ♀ et de trois ♂, la seconde de trois ♀ et de deux ♂. Le ♂ reproducteur a été séparé de la ♀ gravide environ un mois avant la parturition afin de prévenir une éventuelle tuerie des nouveaux-nés. Les animaux sont nourris une fois par jour vers 19h (T.U. + 1) et sont observés lors de chaque nourrissage pendant une heure environ. Deux ♀ de la première portée et un ♂ et une ♀ de la seconde ont été retirés à la mère versus le 25e jour et ont reçu dès ce moment une nourriture monospécifique pendant leur élevage jusqu'à l'âge de quinze semaines.

D'autre part, nous avons obtenu au cours de l'année 1986 plusieurs hybrides de Mustela putorius × Mustela putorius furo. Trois de ces hybrides ont reçu une alimentation monospécifique (canetons) durant six mois consécutifs.

Enfin, la découverte d'un gîte de mise bas le 4 juin 1987 sur les marais du lac de Grand-Lieu (Loire-Atlantique) nous a permis de prélever, le 5 août 1987, 168 fèces à l'intérieur de l'abri. La mensuration du diamètre des fèces a autorisé la discrimination du matériel fècal provenant des jeunes de celui de la mère. Les fèces ont ensuite été traitées selon les techniques habituelles ; les éléments non digérés présents ont permis l'identification des proies consommées à partir des clés de détermination (Day 1966, Rage 1974, Rage 1977, Debrot et al. 1982).

Pour comparer l'amplitude des régimes alimentaires de la femelle et de ses jeunes, les résultats de distribution ont été soumis au calcul de l'indice de diversité standart

\[E = \frac{(A - 1)}{(S - 1)} \]

où A est l'indice de Simpson (1949)

\[A = \frac{1}{\sum P_i^2} \]
Pi est la fréquence relative de la catégorie alimentaire i dans l’ensemble S des catégories alimentaires. L’indice E varie de 0 à 1 en fonction du degré de la spécialisation de l’alimentation.

Enfin, les comparaisons statistiques X^2 et l’indice de recouvrement de Schoener (1971) $C_{jk} = 1 - 1/2 \sum P_i - P_k$ ont permis d’estimer le degré de chevauchement des régimes.

RÉSULTATS

1. Evolution des comportements alimentaires

a) Développement des jeunes.

Au bout de 42 jours de gestation, la ♀ s’isole pour la mise bas. La première parturition s’est déroulée de nuit. La seconde ♀ a mis bas en soirée et s’est déplacée pour se nourrir après la naissance du premier jeune. Après une rapide prise de nourriture, la parturition a repris à l’intérieur du gîte sans nouvelle interruption.

À la naissance, les jeunes sont entièrement nus et pèsent quelques grammes. Les yeux sont clos et les animaux cherchent à conserver le contact physique entre eux. La chaleur plus que la fourrure paraît essentielle à ce contact puisqu’une bouillotte suffit pour appaiser les animaux isolés.

Dès la première semaine, les animaux se couvrent d’un pelage argenté. Les griffes sont en place. À partir du 12ᵉ jour, la pigmentation de la fourrure commence. Entre le 15ᵉ et le 20ᵉ jour, la première dentition apparaît. À 3 semaines, les jeunes répondent à tout dérangement par une sécrétion de la glande anale. La croissance pondérale semble marquer une faible pause pour reprendre dès le 24ᵉ jour la croissance pondérale des jeunes ($\sigma = 31 \text{ g}, 42 \text{ g}, 90 \text{ g}, 110 \text{ g}, 142 \text{ g}, 180 \text{ g puis } 365 \text{ g à } 60 \text{ jours} ; \varphi = 29 \text{ g}, 37 \text{ g}, 76 \text{ g}, 86 \text{ g}, 124 \text{ g}, 145 \text{ g puis } 330 \text{ g}$) (Fig. 1).

![Fig. 1. — Croissance pondérale des jeunes.](image-url)
Les cris de sollicitation des jeunes déclenchent la manifestation d’un comportement de recherche chez la femelle. Solmsen et Apfelbach (1979) font une observation similaire chez Mustela putorius furo.

a) Sevrage.

La mère semble avoir une part active dans l’initiation de la prise alimentaire solide. Dès le 24e jour, alors que les yeux des petits restent toujours clos, la femelle commence à déposer de la nourriture solide près d’un jeune. Les petits orientent la tête vers les aliments déposés et certains peuvent même les sucer. Vers 28 jours, la plupart des jeunes (6 sur 7 animaux) peuvent se déplacer et se diriger activement vers la nourriture que dépose la mère pour la mâcher. Ici, l’odorat semble avoir le rôle principal. C’est également ce que note Apfelbach (1973). Cependant, il est probable à ce stade que la texture de la fourrure de la proie contribue à son identification. A 30 jours, nous avons noté que la femelle avait régurgité une partie de la nourriture qu’elle avait consommée. Ce phénomène a été également observé chez un autre Mustélidé Meles meles (Howard 1979). Le lait maternel reste cependant la principale ressource énergétique et la mère continue d’allaiter régulièrement les jeunes.

A cet âge, les jeunes putois commencent à se déplacer activement et ne défèquent plus au nid. Un recoin de l’entrée du gîte est utilisé à cet effet. Les cris des petits se taisent en l’absence de la mère si un bruit extérieur est détecté par la portée.

L’ouverture des yeux intervient vers le 33e jour (Goethe 1940, Herter et Herter 1953) mais il existe d’importantes variations individuelles. Le jeune le plus précoce a ouvert les yeux le 25e jour, le plus tardif le 36e jour. Les jeunes putois sont alors capables de déchirer les tissus épidermiques des petites proies (campagnols, souris) que la mère a tuées. La portée accueille l’arrivée de la mère par de très nombreuses émissions sonores et certains jeunes peuvent tenter de s’emparer de la proie qu’elle amène. Dès la sixième semaine, les petits commencent à effectuer de brèves sorties, essentiellement vers les sites de défécation de la mère les plus proches du gîte.

Le sevrage proprement dit n’intervient que vers le 45e jour, la femelle mettant brusquement fin à une tentative de tétée. Le tableau 1 récapitule les différentes phases du développement post-natal des jeunes.

2. Acquisition des comportements de prédation

a) Morsures sur la proie morte.

Plus d’une semaine avant l’ouverture des yeux, les jeunes ont déjà pu absorber de la nourriture solide. Mais c’est surtout à partir de la cinquième semaine que les jeunes sont attirés par les proies que rapporte la mère. Les premiers jeux consistent à mordiller la proie même lorsque l’animal est déjà rassasié. Dès six semaines, la proie est agrippée avec les pattes avant et déplacée, le transport n’excède pas quelques centimètres et ne concerne encore que les proies les plus petites.

C’est au début de la septième semaine que les jeunes commencent à orienter leurs morsures vers la nuque des proies que la femelle apporte. Le développement locomoteur est assez avancé pour autoriser quelques pas de poursuite lorsque
TABLEAU 1. — Caractéristiques du développement post-natal.

<table>
<thead>
<tr>
<th>Age</th>
<th>Caractéristiques</th>
<th>Acquisitions comportementales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naissance</td>
<td>Nus, yeux clos.</td>
<td>Cherchent le contact de la chaleur.</td>
</tr>
<tr>
<td>1 semaine</td>
<td>Pelage blanc argenté griffes en place.</td>
<td></td>
</tr>
<tr>
<td>2 semaines</td>
<td>Début de pigmentation du pelage.</td>
<td></td>
</tr>
<tr>
<td>3 semaines</td>
<td>Pigmentation du pelage développement des dents pause de la croissance pondérale.</td>
<td>Sécrétations de la glande anale à tout dérangement lèchent la nourriture solide.</td>
</tr>
<tr>
<td>4 semaines</td>
<td></td>
<td>Déplacements actifs, machent la nourriture solide, défèquent hors du nid.</td>
</tr>
<tr>
<td>5 semaines</td>
<td>Ouverture des yeux.</td>
<td>Déchirent les épidermes des proies.</td>
</tr>
<tr>
<td>6 semaines</td>
<td>Sevrage</td>
<td>Premières sorties, transports de proies, jeux avec la proie.</td>
</tr>
<tr>
<td>7 semaines</td>
<td></td>
<td>Jeux collectifs attaque des proies.</td>
</tr>
<tr>
<td>8 semaines</td>
<td></td>
<td>Marquage en dehors du gîte, capturent des proies.</td>
</tr>
</tbody>
</table>

la mère retire la proie morte. L'orientation des morsures paraît déterminée par la localisation des oreilles et des yeux de la proie. C'est aussi ce qu'observe Wustehube (1960). Le contact du pelage semble également faciliter la reconnaissance (Gossow 1970). A cet âge, le comportement d'attaque de la proie est reproduit sur n'importe quel leurre comportant un semblant de pelage. Les leurrers non velus ne sont que mordillés. Le jeune transporte alors la proie qu'il a obtenu à l'abri de ses congénères. Plusieurs jeunes peuvent jouer collectivement avec la même proie. Les animaux manifestent un comportement de marquage assez net sur les sites de défécation de la mère proches du gîte. Les putois juvéniles refusent alors les proies distribuées par l'expérimentateur et ne touchent plus qu'à la nourriture amenée par la mère. Ce refus, qui cesse vers l'âge de neuf à dix semaines, semble lié au degré de familiarité du soignant par rapport aux animaux. En effet, les jeunes putois isolés de leur mère avant l'ouverture des yeux, acceptent la nourriture apportée par l'expérimentateur.

b) *Attaque de proies vivantes.*

Vers la huitième semaine, la femelle apporte aux putois juvéniles leur première proie vivante.

La proie est prudemment approchée par l'ensemble des jeunes et identifiée à l'odeur et à la texture du pelage. A ce stade, un mouvement de la proie déclenche un début de poursuite plus ou moins fructueuse. La proie est généralement agrippée au niveau du dos par un ou plusieurs jeunes, puis relâchée. La proie est ainsi successivement ramassée et mordillée puis relâchée (ou réussit à s'évader). La mise à mort est obtenue par ces multiples morsures et l'animal est déchiré et consommé le plus souvent en commençant par la tête, mais chacun des jeunes putois va rapidement réussir à s'emparer d'un morceau de la proie.
Ce comportement va connaître une rapide maturation et les jeunes seront très vite capables d’immobiliser et de tuer une petite proie.

Les premières tentatives sur les proies plus volumineuses (de la taille d’un jeune rat) sont nettement plus agressives. Le comportement de défense des rats intervient sans nul doute dans l’excitation du jeune prédateur. Le maintien de la proie par les ongles des pattes avant est primordial pour assurer le succès de la capture. La proie est alors rapidement mordue au cou ou à la tête. La morsure est maintenue longuement et le prédateur secoue sa proie avec force. De rapides mouvements de la queue accompagnent par intermitence le maintien de la proie. La mise à mort est obtenue le plus souvent par une fracture de la base du crâne ou des vertèbres cervicales. Parfois, l’excitation entraîne la décapitation de la proie.

c) Différences interindividuelles dans l’acquisition des comportements.

Il existe d’importantes variations individuelles dans l’évolution des comportements (Fig. 2).

![Diagramme de variations individuelles de l'acquisition du comportement de prédation.](image)

Fig. 2. — Variations individuelles de l’acquisition du comportement de prédation. Nombre de jours séparant l’ouverture des yeux de la première proie tuée (F = femelles, M = mâles).

La comparaison de la durée séparant l’ouverture des yeux de la première proie tuée par le jeune ne montre pas de différences significatives dans l’apparition des comportements de prédation entre les mâles (m = 33,2) et les femelles (m = 33). La femelle F 5 est la plus précoce à manifester un comportement de prédation 29 jours seulement après l’ouverture des yeux. Le mâle M 3 présente le comportement de prédation le plus tardif avec 36 jours.

D’autre part, les animaux qui ont reçu les premiers des proies mortes de la mère n’ont pas nécessairement présenté le comportement de prédation le plus précoce. On peut donc supposer que les premiers stades d’accès à la nourriture solide ne déterminent pas obligatoirement une apparition plus précoce du comportement de prédation.

Enfin, nos observations nous portent à présumer que l’adoption d’une tactique de « parasitisme » peut retarder l’apparition de la prédation. En effet, le mâle M 3 et la femelle F 4 ont souvent cherché à bénéficier de proies dérobées
aux autres jeunes, la précipitation d’un jeune vers la proie entraînant chez deux individus une poursuite pour disputer la proie au premier arrivant. Le comportement de transport de la proie et de nourrissage à l’abri des congénères résulte de la concurrence alimentaire au sein de la portée. Le degré de succès à défendre la proie acquise détermine peu à peu une appropriation des sites de nourrissage les plus favorables. Les animaux dont les proies sont les plus fréquemment dérobées par leurs congénères, s’emparent rapidement de la proie déposée par la mère et vont la consommer en se cachant du reste de la portée. Les jeunes qui défendent mieux leur proie restent la consommer sur place ou s’éloignent peu. L’adoption de ces tactiques individuelles semble trouver son origine dans l’évolution des jeux collectifs.

Les différences observées selon le sexe dans les jeux de Mustela putorius furo résulteraient de la production des androgènes (Stockman et al. 1986). Quoi que notre travail n’ait pu approfondir cet aspect de l’ontogénèse, nos observations nous portent à considérer que les animaux les plus actifs et dominants lors des prouesses ludiques paraissent plus tardifs à manifester le comportement de prédatation incluant une mise à mort de la proie. En revanche, ils semblent recevoir sensiblement plus de proies mortes de la part de la mère et témoigner de moins d’émotivité. Il serait intéressant de compléter ces observations partielles.

3. Influence du nourrissage maternel

a) Comparaison in natura des régimes alimentaires de la mère et des jeunes.

L’analyse de 168 fèces prélevées dans le gîte de mise bas d’une femelle de putois près du lac de Grand-Lieu a permis d’effectuer une comparaison des régimes alimentaires en période de nourrissage (Tab. 2 et Fig. 3). La composition de l’alimentation des jeunes montre la prépondérance des proies mammaliennes qui constituent 91 % du spectre contre 70 % chez la femelle. L’indice de diversité indique que le nourrissage des jeunes par la mère est très spécialisé. L’abondance des microrongeurs atteint 58 % dans l’alimentation des jeunes contre 30 % chez la mère. Par contre, la distribution des surmulots (Rattus norvegicus) reste bien inférieure à l’abondance estimée de cette proie dans le régime de la femelle (21,8 % contre 32,8 %). L’inverse se produit pour le lapin de garenne (Oryctolagus cuniculus) dont la fréquence dépasse largement dans l’alimentation des jeunes celle obtenue chez leur mère (11 % contre 3 %).

![Fig. 3. — Distribution des régimes alimentaires.](image-url)
<table>
<thead>
<tr>
<th></th>
<th>Femelle</th>
<th>Jeunes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAMMIFÈRES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rats musqués</td>
<td>2,9</td>
<td>-</td>
</tr>
<tr>
<td>Surmulots</td>
<td>32,8</td>
<td>21,8</td>
</tr>
<tr>
<td>Microrongeurs</td>
<td>29,8</td>
<td>58,4</td>
</tr>
<tr>
<td>Lapins</td>
<td>2,9</td>
<td>10,9</td>
</tr>
<tr>
<td>OISEAUX</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,9</td>
<td>-</td>
</tr>
<tr>
<td>AMPHIBIENS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23,9</td>
<td>8,9</td>
</tr>
<tr>
<td>INVERTEBRÉS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,9</td>
<td>-</td>
</tr>
<tr>
<td>DIVERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>-</td>
</tr>
</tbody>
</table>

\[
\text{Largeur de Niche } \frac{1}{\Sigma P_i^2} = 3,889 \quad 2,449
\]

\[
\text{Indice Diversité } E = 0,413 \quad 0,483
\]

Les proies non mammaliennes ne représentent que 9% du régime alimentaire des petits et ne sont représentées que par une Classe, les Amphibiens. En revanche, une importante proportion de l’alimentation de la mère est composée par les Amphibiens avec près de 24%. Les Oiseaux et les Invertébrés participent pour une part plus modeste avec 3% du régime de la femelle.

L’application du \(\chi^2 \) aux régimes alimentaires de la mère et des jeunes révèle une différence très significative (\(\chi^2 = 33,18 ; P < 0,001 \)). L’indice de recouvrement de Schoener (1971) indique un chevauchement partiel des régimes qui n’atteint que \(C_{jk} = 0,636 \) entre la femelle et les jeunes.

b) *Influence du nourrissage maternel sur l’alimentation des jeunes.*

Quatre jeunes putois et trois hybrides ont reçu durant leur élevage une nourriture monospécifique composée de canetons, jusqu’à l’âge de quinze semaines pour les jeunes putois et de six mois pour les hybrides. L’indépendance des jeunes serait progressivement acquise à partir du quatrième mois dans la nature (Goethe 1940 ; Herter et Herter 1953 ; Brosset 1974). Le nourrissage effectué couvre donc la période sensible de mise en place des choix alimentaires.

A l’âge de seize semaines, la présentation de proies nouvelles (souris, grenouilles, cobayes et rats) n’a entraîné aucun refus de prédation chez les jeunes. De la même manière, les proies non connues ont été pourchassées, tuées et consommées par les hybrides à l’âge de sept mois. Ainsi, lorsque l’animal doit se nourrir, la distribution de nourriture monospécifique ne met pas en évidence une détermination du nourrissage sur les choix alimentaires ultérieurs.

Toutefois, il existe un temps de latence mesurable en secondes, qui précède l’identification des proies nouvelles. Les jeunes putois peuvent ne pas identifier tout de suite la proie déposée et continuer leur recherche active aux alentours (Fig. 4). Ces observations paraissent en convergence avec les résultats obtenus par Apfelbach (1973) qui montre que des animaux nourris monospécifiquement
jusqu'à huit mois répondent préférentiellement à l'odeur de cette nourriture. Cependant, il semble peu probable que le temps de latence précédant la reconnaissance d'une proie soit déterminée par l'expérience précoce des jeunes. Ainsi,

Fig. 4. — Mesure du temps moyen de recherche d'une proie chez 4 putois (■) et 3 hybrides (O). De 0 à 9 jours, le nourrissage est monospécifique. À partir du 10e jour, on dépose des proies non familières. Test effectué à l'âge de 10 semaines (groupe 1) et de 7 mois (groupe 2).

nous avons pu obtenir des résultats presque similaires (latence prononcée avant l'identification d'une proie nouvelle) avec des animaux nourris de manière polyspécifique durant leur élevage par leur mère, lorsque la présentation de cette proie « nouvelle » mais connue, avait été précédée d'un nourrissage régulier et exclusif pendant une dizaine de jours avec une autre proie connue (Fig. 5). Il semble

Fig. 5. — Mesure du temps moyen de recherche d'une proie chez 7 animaux nourris de manière monospécifique (*) comparé à 7 animaux nourris de proies diverses et élevés par la mère (▲). Tests effectués à l'âge de 16 semaines et de 7 mois.
que la familiarité de la proie, et notamment de son odeur soit un facteur en facilitant la reconnaissance.

DISCUSSION ET CONCLUSION

L'apparition des comportements de prédation depuis la naissance jusqu'à l'indépendance se déroule en plusieurs étapes chez *Mustela putorius*. Le premier stade débute avec les premières prises de nourriture solide dès l'âge de trois semaines. Les jeunes lèchent les proies déposées près d'eux par la mère. Par la suite, la seconde étape consiste en un déplacement actif vers la proie morte qu'apporte la mère dès son retour. L'accueil est en général bruyant, de nombreux cris de sollicitation sont émis envers la mère. Le troisième stade montre l'importance des interactions sociales au sein de la portée : les jeunes s'emparent des proies mortes déposées et tentent de les soustraire à leurs congénères en les transportant. Les putois juvéniles poursuivent également la proie que tient leur mère et reproduisent la séquence complète du comportement de prédation sur les proies mortes. Une quatrième étape consiste dans la poursuite et la répétition des morsures sur la proie vivante que la femelle dépose. Les attaques sont encore le plus souvent dirigées vers le dos de la victime et la mise à mort est longue et parfois accidentelle. Enfin, la cinquième étape montre le déroulement complet de la séquence depuis la poursuite de la proie jusqu'à sa mise à mort par une morsure sur la nuque, le museau ou le cou de la proie.

Nos résultats indiquent que les premiers stades d'accès à la nourriture solide ne déterminent pas nécessairement l'apparition plus précoces des comportements de prédation. D'autre part, l'adoption de tactiques individuelles souligne l'importance des interactions sociales au sein de la portée. Chaque jeune utilise une tactique personnelle pour soustraire la proie obtenue à l'attention des autres et certains peuvent même préférer dérober la proie détectée par leurs congénères. Ces différentes options semblent intervenir dans la rapidité de mise en place des comportements. Quoique notre travail n'ait pu approfondir cet aspect de l'ontogénèse, nos observations nous portent à considérer que le choix des tactiques adoptées serait influencé par le développement des jeux entre les petits.

La mère semble avoir une part active dans l'initiation des comportements de prédation. Le rôle facilitant de la mère est sensible à trois niveaux. Premièrement, en apportant des proies mortes, elle initie et facilite le sevrage. La première proie capturée est aussitôt transportée et déposée dans le gîte. Deuxièmement, quelques jours plus tard, lorsque les jeunes sortent de leur gîte, la mère après avoir apporté la proie morte, la transporte à nouveau, la retire et la ramène. Cette attitude paradoxale incite le plus souvent les jeunes à poursuivre la proie. Ce comportement particulier a été également décrit chez *Suricata suricata* (Ewer 1963). Troisièmement, en déposant près des jeunes des proies vivantes, la mère
oblige les jeunes à tenter d’immobiliser, puis de mettre à mort eux-mêmes la proie. Cette incitation directe à la prédation a été observée chez les Félidés, (Leyhausen 1956, Kruuk et Turner 1967).

Cependant, la quête alimentaire active des jeunes prend une part importante dans le développement des comportements.

D’autre part, la différence des régimes alimentaires de la mère et des jeunes suggère une sélection assez prononcée des proies que la femelle remet aux jeunes pendant la période du nourrissage. Deux types de proies sont nettement plus abondants dans l’alimentation des jeunes par rapport à celle de leur mère : les lapins et les microrongeurs. La fréquence des lapins peut aisément s’expliquer par la proximité entre les sites exploités et le gîte de reproduction, la femelle transportant ainsi une proie qui réalise un excellent bilan énergétique. La prépondérance des petites proies mammaliennes semblent correspondre aux besoins individuels des jeunes. Enfin, la moindre abondance des surmulots dans l’alimentation des jeunes est plus délicate à interpréter. Les douves fréquentées par les surmulots que la femelle exploite, sont relativement distantes du gîte.

Par ailleurs, le putois amasse au printemps quantité de petites proies, principalement des Amphibiens sur ce site (Lodé 1989 b) et il est probable que ces « réserves » soient exploitées pendant toute la période de reproduction.

L’apport des différentes proies et surtout le transport de proies vivantes traduit chez le femelle, de remarquables modifications du comportement de prédation. La séquence de capture de la proie ne se conclut plus sur une mise à mort. Une inhibition progressive de la séquence de mise à mort succède ainsi à la capture de proies en surabondance pour alimenter les jeunes.

Toutefois, l’influence du nourrissage maternel ne semble pas orienter les choix alimentaires des jeunes. Nos résultats n’indiquent pas d’étroites dépendances et il est probable que l’expérience alimentaire précoce ne soit pas décisive dans le développement du comportement et le choix ultérieur des proies chez Mustela putorius.

REMERCIEMENTS

BIBLIOGRAPHIE

